AD A148172 Technical Report Documentation Page

		, .		
1. Report No. FAA-EE-84-7	2. Covernment Accession No.	3. Recipient's Catalog No.		
J. Title and Subtitle		5. Report Date		
Noise Measurement Flight Test	t for Boeing Vertol 234/	September 1984		
CH 47-D Helicopter: Data/Ana	alyses	6. Performing Organization Code		
		8 Parture Organization Report No		
7. Author's) J. Steven Newman, Edv	vard J. Rickley (1),			
Performent Diana (2), Kristy	A. Dealtie (2)			
Federal Aviation Administrat	ion Office of Environmen			
and Energy, Noise Abatement I	Division, Noise Technolog	y 11. Contract or Grant No.		
Branch, (AEE-120), 800 Indepe	endence Ave., SW			
Washington, DC 20591		13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address Federal Aviation Administrat:	ion, Office of Environmen	t		
Branch, (AEE-120), 800 Indepe Washington, DC 20591	endence Ave., SW	14. Sponsoring Agency Code		
 15. Supplementary Notes (1) U.S. Department of Transp Mass. 02142 (2) ORI. Inc. 1375 Piccard I 	portation Systems Center, Drive. Rockville. Marvlan	Kendall Square, Cambridge,		
16 Abstract				
This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program with the Boeing-Vertol CH-47D helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise.				
This report is the seventh in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983. The BV234/CH-47D test program involved the acquisition of detailed acoustical, position and meteorological data.				
1) acquisition of acoustical data for use in assessing heliport environment impact, 2) documentation of directivity characteristics for static operations of helicopters, 3) establishment of grounf-to-ground and air-to-ground acoustical propagtion relationships for helicopters, 4) determination of noise event duration influences on energy dose acoustical metrics, 5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and 6) documentation of noise levels aquired using international helicopter noise certification test procedures.				
17. Key Words	18. Distribution St.	itement		
helicopter, noise, Boeing-Ver heliport, environmental impac directivity, noise certificat standards	rtol, This docu ct, public th tion Informati 22161	nent is available to the rough the National Technical on Service, Springfield, VA		
19. Security Classif. (of this report)	20, Security Classif, (of this page)	21. No. of Pages 22. Price		
Unclassified	Unclassified	190		

Form DOT F 1700.7 (8-72)

Reproduction of complexed page authorized

BOEING VERTOL 234 / CH-47D HELICOPTER

Acknowledgments

- - ----

The authors wish to thank the following individuals and organizations who contributed to the success of the measurement program and/or the production of this report.

- 1. Boeing Vertol, for providing the test helicopter and the flight crew.
- 2. The Dulles Air Traffic Control Tower Mr. Art Harrison, Chief
- 3. The National Air and Space Administration (NASA), Rotorcraft Office, and Mr. John Ward for their support of data reduction activities.
- 4. Ms. Sharon Daboin for her support in data acquisition and test administration assistance.
- 5. Ms. Maryalice Locke of ORI, Inc. for support in report production.
- 6. Ms. Loretta Harrison for her typing and report production assistance.

TABLE OF CONTENTS

222

			PAGE
LIST	OF TA	ABLES	iv
LIST	OF FI	IGURES	vi
GLOSS	ARY.		viii
02002		• • • • • • • • • • • • • • • • • • • •	
1.0	INTRO	DDUCTION	1
2.0	TEST	HELICOPTER DESCRIPTION	5
3.0	TEST	SYNOPSIS	9
	2 1	MEACHDEMENT EACTITTY	11
	2.1		12
	3.2	MICKUPHUNE LUCATIONS	13
	3.3	FLIGHT PATH MARKERS AND GUIDANCE SYSTEMS LOCATIONS	13
4.0	TEST	PLANNING AND BACKGROUND	17
	4 1	ADVANCE BRIFFINGS AND COORDINATION	17
	4.2	TEST COMMINICATIONS	17
	4.2		19
	4.5	ANDIENT NOICE	10
	4.4	AMDIENT NOISE	13
5.0	DATA	ACQUISITION AND GUIDANCE SYSTEMS	21
	5.1	APPROACH GUIDANCE SYSTEM	21
	5.2	PHOTO ALTITUDE DETERMINATION SYSTEM	23
	5 3		26
	5 4	HIDDED ATD METEODOLOCICAL DATA NUS. STERLING VA	20
	J.4 E E	CHIDEACE METEODOLOCICAL DATA MUS. SIENLING, VA	20
	5.5	SURFACE METEUROLOGICAL DATA/NWS: DULLES AIRPORT	29
	2.0	NOISE MEASUREMENT INSTRUMENTATION	31
		5.6.1 TSC MAGNETIC RECORDING SYSTEM	31
		5.6.2 FAA DIRECT READ MEASUREMENT SYSTEM	33
		5.6.3 DEPLOYMENT OF ACOUSTICAL MEASUREMENT	<i></i>
		INSTRUMENTATION	35
6.0	NOIS	E DATA REDUCTION	39
	6 1	TSC MACHETIC DECORDING DATA DEDUCTION	30
	0.1	6 1 1 AMRIENT NOISE	41
			41
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41
		U.I.J MANDIJJ JIJIEN IINE UNDIANI	41
			42
		0.1.) IUNE UURKEUIIUND	42
		0.1.0 UTHER METRICS	42
		6.1.7 SPECTRAL DATA/STATIC TESTS	- 43

- -

.37

and the second

PAGE

	6.2	FAA DIRECT READ DATA PROCESSING	45
		6.2.1 AIRCRAFT POSITION AND TRAJECTORY	45
		6.2.2 DIRECT READ NOISE DATA	46
7.0	TEST	SERIES DESCRIPTION	47
8.0	DOCU	MENTARY ANALYSES/PROCESSING OF TRAJECTORY AND	
	ME	TEOROLOGICAL DATA	53
	8.1	PHOTO ALTITUDE/FLIGHT PATH TRAJECTORY ANALYSES	53
	8.2	UPPER AIR METEOROLOGICAL DATA	55
9.0	EXPL	ORATORY ANALYSES AND DISCUSSIONS	59
	9.1	VARIATION IN NOISE LEVELS WITH AIRSPEED FOR LEVEL	
		FLYOVER OPERATIONS	60
		9.1.1 VARIATION IN NOISE LEVELS WITH DIFFERENT	
			60
		9.1.2 VARIATION IN NOISE LEVEL WITH VARIATION IN	()
	9.2	STATIC DATA ANALVSIS, SOUDCE DIDECTIVITY AND HADD	02
	J•2	VS. SOFT PROPAGATION CHARACTERISTICS	64
	9.3	COMPARISON OF NOISE DATA: 4-ft VS. GROUND	04
		MI CROPHONES	69
	9.4	ANALYSIS OF DURATION EFFECTS	72
		9.4.1 RELATIONSHIP BETWEEN SEL, AL AND T10	72
		9.4.2 ESTIMATION OF 10 dB DOUN DURATION TIME	75
		9.4.3 RELATIONSHIP BETWEEN SEL MINUS AL AND THE	
		RATIO D/V	77
	9.5	ANALYSIS OF VARIABILITY IN NOISE LEVELS FOR TWO	
		SITES EQUIDISTANT OVER SIMILAR PROPAGATION PATHS	79
	9.6	VARIATION IN NOISE LEVELS WITH AIRSPEED FOR 6 AND 9	
		DEGREE APPROACH OPERATIONS	83
	9.7	ANALYSIS OF GROUND-TO-GROUND ACOUSTICAL PROPAGATION.	86
		9.7.1 SOFT PROPAGATION PATH	86
	0 0	9.7.2 HARD FROPAGATION PATH	8/
	7.0	ACOUSITCAL PROPAGATION ANALYSIS/AIR-TO-GROUND	92
REFE	RENCE	S	97
10.0	APPE	NDICES	

AFPENDIX A: MAGNETIC RECORDING ACOUSTICAL DATA AND DURATION FACTORS FOR FLIGHT OPERATIONS

APPENDIX B: DIRECT READ ACOUSTICAL DATA AND DURATION FACTORS FOR FLIGHT OPERATIONS

والمتحكم والمحمد والمتحد والمحمد والمحم

- APPENDIX C: MAGNETIC RECORDING ACOUSTICAL DATA FOR STATIC OPERATIONS
- APPENDIX D: DIRECT READ ACOUSTICAL DATA FOR STATIC OPERATIONS
- APPENDIX E: COCKPIT INSTRUMENT PHOTO DATA AND OBSERVER DATA
- APPENDIX F: PHOTO-ALTITUDE AND FLIGHT PATH TRAJECTORY DATA
- APPENDIX G: NWS UPPER AIR METEOROLOGICAL DATA
- APPENDIX H: NWS-IAD SURFACE METEOROLOGICAL DATA
- APPENDIX 1: ON-SITE METEOROLOCICAL DATA

,

LIST OF TABLES

¢.

		PAGE
2.1	HELICOPTER CHARACTERISTICS.	7
2.2	ICAO REFERENCE PARAMETERS	8
5.1	REFERENCE HELICOPTER ALTITUDES FOR APPROACH	22
5.2	EWS SYSTEM ACCURACY	30
5.3	RUSTRAK RECORDER RANGE	31
7.1	TEST SUMMARY	49
9.1	ADVANCING BLADE TIP MACH NUMMBERS	62
9.2	COMPARISON OF FLIGHTS WITH MILITARY AND CIVILIAN TRIM	63
9.3	A-WEIGHTED NOISE LEVEL RANGES	67
9.4	COMPARISON OF GROUND AND 4-FT. MICROPHONE DATA	71
9.5	DURATION (T-10) REGRESSION ON D/V	76
9.6	SEL-ALM REGRESSION ON D/V	78
9.7	COMPARISON OF NOISE VS. DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: HIGE	81
9.8	COMPARISON OF NOISE VS. DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: HOGE	81
9.9	COMPARISON OF NOISE VS. DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: FI	82
9.10	COMPARISON OF NOISE VS. DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: GI	82
9.11	BV 234/CH-47D APPROACH DATA	84
9.12	DATA FROM SOFT SITES	88
9.13	EMPIRICAL PROPAGATION CONSTANTS FOR SOFT SITES	89
9.14	DATA FROM HARD SITES	90
9.15	EMPIRICAL PROPAGATION CONSTANTS FOR HARD SITES	91
9.16	PROPAGATION DATA - ICAƏ TAKEOFF	94

iv

9.17 PROPAGATION DATA - STANDARD TAKEOFF	94
9.18 PROPAGATION DATA - MILITARY TAKEOFF	94
9.19 SUMMARY TABLE OF PROPAGATION CONSTANTS FOR TWO TAKEOFF OPERATIONS	94
9.20 SUMMARY TABLE FOR TAKEOFF OPERATION	94
9.21 LEVEL FLYOVER PROPAGATION ANALYSIS - AL	95
9.22 SUMMARY TABLE FOR LFO - AL	95
9.23 LEVEL FLYOVER PROPAGATION - EPNL	96
9.24 SUMMARY TABLE FOR LFO - EPNL	96

LIST OF FIGURES

ہ ۔

		PAGE
1.1	HELICOPTER NOISE SOURCES	3
2.1	BV 234/CH-47D GENERAL DIMENSIONS	6
3.1	FLIGHT TEST AND NOISE MEASUREMENT PERSONNEL IN ACTION	10
3.2	DULLES AIRPORT AND TEST FLIGHT TRACK	12
3.3	NOISE MEASUREMENT AND PHOTO-SITE SCHEMATIC	15
4.1	COMMUNICATIONS NETWORK	18
4.2	QUAIL AND QUAIL SONG	20
5.1	POP SYSTEM	24
5.2	COCKPIT PHOTOGRAPH	27
5.3	TECHNICIANS LAUNCHING RADIOSONDE BALLOON	28
5.4	ACOUSTICAL MEASUREMENT INSTRUMENTATION	32
5.5	ACOUSTICAL MEASUREMENT INSTRUMENTATION	34
5.6	MICROPHONE AND ACOUSTICAL EQUIPMENT DEPLOYMENT FOR FLIGHT OPERATIONS	37
5.7	MICROPHONE AND ACOUSTICAL EQUIPMENT DEPLOYMENT FOR STATIC OPERATIONS	38
6.1	TSC LABORATORY	39
6.2	ACOUSTICAL DATA REDUCTION/INSTRUMENTATION	40
6.3	ACOUSTICAL EMISSION ANGLE CONVENTION	43
6.4	DIRECT READ DATA REDUCTION	44
7.1	HELICOPTER TAKEOFF NOISE TESIS	50
7.2	HELICOPTER APPROACH NOISE TESTS	51
7.3	HELICOPTER FLYOVER NOISE TESTS	52
8.1	TIME HISTORY ANALYSIS FOR TEMPERATURE	56

8.2	TIME HISTORY ANALYSIS FOR RELATIVE HUMIDITY	56
8.3	WIND SPEED VS. TIME: HEAD/TAIL WIND	58
8.4	WIND SPEED VS. TIME: CROSS WIND	58
9.1	LFO: SEL VS. INDICATED AIRSPEED	61
9.2	LFO: AL VS. INDICATED AIRSPEED	61
9.3	LFO: EPNL VS. INDICATED AIRSPEED	61
9.4	LFO: PNLT _M VS. INDICATED AIRSPEED	61
9.5	HARD VS. SOFT PATH DIRECTIVITY: HIGE	61
9.6	HARD VS. SOFT PATH DIRECTIVITY: HOGE	61
9.7	HARD VS. SOFT PATH DIRECTIVITY: FI	66
9.8	HARD VS. SOFT PATH DIRECTIVITY: GI	66
9.9	HELICOPTER HOVER NOISE TEST	68
9.10	RELATIONSHIP BETWEEN INCIDENT AND REFLECTED SOUND WAVES	71
9.11	DURATION ANALYSIS - 500 FT. LFO	74
9.12	2 TIP VORTEX INTERACTION	85

And a state of the state of the

and the second second

فتتقدم أستعنا فستخد ومساسط مستل ويرجعهما

والمعادلة والمحمولية والمحمولية

and some

GLOSSARY

a start

Contraction - and the -

Wegeläfter Williamen and an andere andere andere andere

والمحمد فكرت والمحاط والمحدود

AGL	-	Above ground level
AIR	-	Aerospace Information Report
AL	-	A-Weighted sound level, expressed in decibels (See L _A)
AIM	-	Maximum A-weighted sound level, expressed in decibels (see L _{AM})
ALAM	-	As measured maximum A-weighted Sound Level
ALT	-	Aircraft altitude above the microphone location
APP	-	Approach operational mode
CLC	-	Centerline Center
СРА	-	Closest point of approach
d	-	Distance
dB	-	Decibel
dBA	-	A-Weighted sound level expressed in units of decibels (see A _L)
df	-	Degree of freedom
Δ	-	Delta, or change in value
Δ1	-	Correction term obtained by correcting SPL values for atmospheric absorption and flight track deviations per FAR 36, Amendment 9, Appendix A, Section A36.11, Paragraph d
Δ2	-	Correction term accounting for changes in event duration with deviations from tne reference flight path
DUR(A)	-	"10 dB-Down" durition of L _A time history
EPNL	-	Effective perceived noise level (symbol is LEPN)

EV	-	Event, test run number
FAA	-	Federal Aviation Administration
FAR	-	Federal Aviation Regulation
FAR-36	-	Federal Aviation Regulation, Part 36
GLR	-	Graphic level recorder
HIGE	-	Hover-in-ground effect
HOGE	-	Hover-out-of-ground effect
IAS	-	Indicated airspeed
ICAO	-	International Civil Aviation Organization
IRIG-B	-	Inter-Range Instrumentation Group B (established technical time code standard)
J	-	The value which determines the radiation pattern
K(DUR)	-	The constant used to correct SEL for distance and velocity duration effects in $\Delta 2$
KIAS	-	Knots Indicated Air Speed
K(P)	-	Propagation constant describing the change in noise level with distance
K(S)	-	Propagation constant describing the change in SEL with distance
Kts	-	Knots
LA	-	A-Weighted sound level, expressed in decibels
Leq	-	Equivalent sound level
LFO	-	Level Flyover operational mode
MA	-	Advancing blade tip Mach number
M _R	-	Rotational Mach number
M _T	-	Translational Mach number
N	-	Sample Size
NWS	-	National Weather Service
oaspl _m	-	Maximum overall sound pressure level in decibels
PISLM	-	Precision integrating sound level meter

ix

PNLM	-	Maximum perceived noise level
PNLTM	-	Maximum tone corrected perceived noise level
POP	-	Photo overhead positioning system
Q	-	Time history "shape factor"
RH	-	Relative Humidity in percent
RPM	-	Revolutions per minute
SAE	-	Society of Automotive Engineers
SEL	-	Sound exposure level expressed in decibels. The integration of the AL time history, normalized to one second (symbol is L _{AE})
SELAM	-	As measured sound exposure level
sel-al _m	-	Duration correction factor
SHP	-	Shaft horse power
SLR	-	Single lens reflex (35 mm camera)
SPL	-	Sound pressure level
Т	-	Ten dB down duration time
TC	-	Tone correction calcualted at PNLT _M
т/о	-	Takeoff
TSC	-	Department of Transportation, Transportation Systems Center
v	-	Velocity
VASI	-	Visual Approach Slope Indicator
v _H	-	Maximum speed in level flight with maximum continuous power
v _{ne}	-	Never-exceed speed
Vy	-	Velocity for best rate of climb

х

1.0 <u>Introduction</u> - This report documents the results of a Federal Aviation Administration (FAA) noise measurement/flight test program involving the Boeing Vertol 234/CH-47D helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise.

This report is the seventh in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983.

The CH-47D test program was conducted by the FAA in cooperation with Boeing Vertol and a number of supporting Federal agencies. The rigorously controlled tests involved the acquisition of detailed acoustical, position and meteorological data.

This test program was designed to address a series of objectives including: 1) acquisition of acoustical data for use in heliport environmental impact analyses, 2) documentation of directivity characteristics for static operation of helicopters, (3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, 4) determination of noise event duration influences on energy dose acoustical metrics, 5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and 6) documentation of noise levels acquired using international helicopter noise certification test procedures.

The helicopter is a complex aircraft which generates noise from many different sources. Figure 1.1 provides a diagram identifying some of these sources. Two other noise generating mechanisms (both producing impulsive noise) are blade vortex interaction (see Figure 9.12) and high advancing tip Mach Numbers. These figures are provided for the reader's reference, since this report deals with the helicopter's noise in general.

The appendices to this document provide a reference set of acoustical data for the Hughes helicopter operating in a variety of typical flight regimes. The first seven chapters contain the introduction and description of the helicopter, test procedures and test equipment. Chapter 8 describes analyses of flight trajectories and meteorological data and is documentary in nature. Chapter 9 delves into the areas of acoustical propagation, helicopter directivity for static operations, and variability in measured acoustical data over various propagation surfaces. The analyses of Chapter 9 in some cases succeed in establishing relationships characterizing the acoustic nature of the subject helicopter, while in other instances the results are too variant and anomalous to draw any firm conclusions. In any event, all of the analyses provide useful insight to people working in the field of helicopter environmental acoustics, either in providing a tool or by identifying areas which need the illumination of further research efforts.

TEST HELICOPTER DESCRIPTION

2.) <u>Test Helicopter Description</u> - The 234/CH-47D (Chinook) is a helicopter that the manufacturer, Boeing Vertol of Philadelphia, Pennsylvania, currently produces for the U.S. Army. The aircraft was designed to meet the Army's need for an all-weather medium transport helicopter that could operate under severe altitude and temperature conditions. It is equipped to transport two pilots, 33 to 44 troops or 24 litters and two attendants. Other features include a triple external cargo hook system, ferry fuel tanks, and a power-down ramp and water dam so that the ramp may operate on water. Figure 2.1 provides general dimensional figures for the helicopter.

The Boeing Vertol Company originally constructed this helicopter as a military transport under the designation Ch-47D. Later, a civil transport version of the original military helicopter was developed and designated as the BV 234. Acoustically, there are a few prominent differences between the two versions. The basic airframe, power plant and rotor system are identical for the two models with the exception that the Ch-47D has an outside air-scoop in the nose area which is not present on the civilian BV 234 model. The primary acoustical differences, however, occur with operational considerations of rotor RPM and relaive fore/aft rotor tilt. The CH-47D uses a constant rotor speed of 225 RPM while the BV 234 uses a rotor speed of 220 RPM. The CH-47D utilizes a military rotor trim which establishes the minimum distance separation between the lane of the fore rotor and the plane of the aft rotor. The BV 234 uses an alternative civil trim which further separates the fore/aft rotor planes, thus minimizing the degree of vortex interaction between the rotor system.

In the test program, a number of different flight configurations were utilized to employ both military and civilian operational characteristics. Section 7 specifies the operational mode for each test series. Throughout the report, the helicopter is usually referred to by both its names--BV 234/Ch-47D--but within specific analyses utilizing data from a particular test series, only the appropriate civil or military designation is used.

Selected operational characteristics, obtained from the helicopter manufacturer, are presented in Table 2.1. Table 2.2 presents a summary of the flight operational reference parameters determined using the procedures specified in the International Civil Aviation Organization (ICAO) noise certification testing requirements. Presented along with the operational parameters are the altitudes that one would expect the helicopter to attain (referred to the ICAO reference test sites). This information is provided so that the reader may implement an ICAO type data correction using the "As Measured" data contained in this report. This report does not undertake such a correction, leaving it as the topic of a subsequent report.

~ ~ ~

- Januar

BOEING VERTOL 234/CH-47D GENERAL DIMENSIONS

FRONT VIEW

TABLE 2.1

- - - ----

The second s

HELICOPTER CHARACTERISTICS

HELICOPTER MANUFACTURER	: Boeing Vertol
HELICOPTER MODEL	: 234
HELICOPTER TYPE	: Tandem rotor
TEST HELICOPTER N-NUMBER	: N J016
MAXIMUM GROSS TAKEOFF WEIGHT	: 48,500 lbs (21,999 kg)
NUMBER AND TYPE OF END NES	: 2 Lycoming T55-L-712
SHAFT HORSE POWER	: 4075 HP
MAXIMUM CONTINUOUS POWER	: 2975 HP
SPECIFIC FUEL CONSUMPTION AT MAXIMUM POWER (LB/HR/HF)	: .533 LB/HR/HP
NEVER EXCEED SPEED (V _{NE})	: 150 KTS
MAX SPEED IN LEVEL FLIGHT WITH MAX CONTINOUS POWER (V _H)	: 145 KTS
SPEED FOR BEST RATE OF CLIMB (V_{Υ})	: 85 KTS
BEST RATE OF CLIMB	: 1120 FT/MIN

FORWARD AND AFT ROTOR SPECIFICATIONS

ROTOR SPEED	: 225 RPM
DIAMETER	: <u>60 FT.</u>
CHORD	: 2.67 FT.
NUMBER OF BLADES	: 3
BLADE LOAD	: 101 LBS/FT ²
FUNDAMENTAL BLADE PASSAGE FREQUENCY	: <u>11 Hz</u>
ROTAT DNAL TIP MACH NUMBER (77 ⁰ F)	: .6349

TABLE 2.2

ICAO REFERENCE PARAMETERS

	TAKEOFF	APPROACH	LEVEL FLYOVER
AIRSPEED (KTS)	: 85	85	145
RATE OF CLIMB/DESCENT (fpm)	: 1120	<u> </u>	NA
CLIMB/DESCENT ANGLE (DEGREES)	: 7.50	6 ⁰	NA
ALTITUDE/CPA (FEET)			
SITE 5	: <u>217/21</u> 5	342/340	492
SITE 1	: <u>281/27</u> 9	394/392	492
SITE 4	: <u>346/34</u> 3	446/443	492
SLANT RANGE (FEET) TO			
SITE 2	: 567	630	696
SITE 3	: 567	630	696

TEST SYNOPSIS

3.0 <u>Test Synopsis</u> - Below is a listing of pertinent details pertaining to the execution of the helicopter tests.

 Test Sponsor, Program Management, and Data Analysis: Federal Aviation Administration, Office of Environment and Energy, Noise Abatement Division, Noise Technology Branch (AEE-120).

2. Test Helicopter: Ch-47D, provided by Boeing Vertol

3. Test Date: Friday, July 22, 1983

4. Test Location: Dulles International Airport, Runway 30 over-run area.

5. Noise Data Measurement (recording), processing and analysis: Department of Transportation (DOT), Transportation Systems Center (TSC), Noise Measurement and Assessment Facility.

Noise Data Measurement (direct-read), processing and analysis:
 FAA, Noise Technology Branch (AEE-120).

7. Cockpit instrument photo documentation, photo-altitude determination system; documentary photographs: Department of Transportation, Photographic Services Laboratory.

8. Meteorological Data (fifteen minute observations): National Weather Service Office, Dulles International Airport.

9. Meteorological Data (radiosonde/rawinsonde weather balloon launches): National Weather Service Upper Air Station, Sterling Park, Virginia.

10. Meteorological Data (on site observations): DOT-TSC.

 Flight Path Guidance (portable visual approach slope indicator (VASI) and theodolite/verbal course corrections): FAA Technical Center, ACT-310.

12. Air Traffic Control: Dulles International Airport Air Traffic Control Tower.

FIGURE 3.1 Flight Test and Noise Measurement Personnel In Action

13. Test site preparation; surveying, clearing underbrush, connecting electrical power, providing markers, painting signs, and other physical arrangements: Dulles International Airport Grounds and Maintenance, and Airways Facilities personnel.

Figure 3.1 is a photo collage of flight test and measurement personnel performing their tasks.

3.1 <u>Measurement Facility</u> - The noise measurement testing area was located adjacent to the approach end of Runway 12 at Dulles International Airport. (The approach end of Runway 12 is synonymous with Runway 30 over-run area.) The low ambient noise level, the availability of emergency equipment, and the security of the area all made this location desirable. Figure 3.2 provides a photograph of the Dulles terminal and of the test area.

The test area adjacent to the runway was nominally flat with a ground cover of short, clipped grass, approximately 1800 feet by 2200 feet, and bordered on north, south, and west by woods. There was minimum interference from the commercial and general aviation activity at the airport since Runway 12/30 was closed to normal traffic during the tests. The runways used for normal traffic, 1L and 1R, were approximately 2 and 3 miles east, respectively, of the test site.

The flight track centerline was located parallel to Runway 12/30 centered between the runway and the taxiway. The helicopter hover point for the static operations was located on the southwest corner of the approach end of Runway 12. Eight noise measurement sites were established in the grassy area adjacent to the Runway 12 approach ground track.

Approach to Runway 12 at Dulles Noise Measurement Site for 1983 Helicopter Tests 3.2 <u>Microphone Locations</u> - There were eight separate microphone sites located within the testing area, making up two measurement arrays. One array was used for the flight operations, the other for the static operations. A schematic of the test area is shown in Figure 3.3.

A. <u>Flight Operations</u> - The microphone array for flight operations consisted of two sideline sites, numbered 2 and 3 in Figure 3.3, and three centerline sites, numbered 5, 1, and 4, located directly below the flight path of the helicopter. Since site number 3, the north sideline site, was located in a lightly wooded area, it was offset 46 feet to the west to provide sufficient clearance from surrounding trees and bushes.

B. <u>Static Operations</u> - The microphone array for static operations consisted of sites 7H, 5H, 1H, 2, and 4H. These sites were situated around the helicopter hover point which was located on the southwest corner of the approach end of Runway 12. These site locations allowed for both hard and soft ground-to-ground propagation paths.

3.3 <u>Flight Path Markers and Guidance System Locations</u> - 7isual cues in the form of squares of plywood painted bright yellow with a black "X" in the center were provided to define the takeoff rotation point. This point was located 1640 feet (500 m) from centerline center (CLC) microphone location. Four portable, battery-powered spotlights were deployed at various locations to assist pilots in maintaining the array centerline. To provide visual guidance during the approach portion of the test, a standard visual approach slope indicator (VASI) system was used. In addition to the visual guidance, the VASI crew also provided verbal

guidance with the aid of a theodolite. Both methods assisted the helicopter pilot in adhering to the microphone array centerline and in maintaining the proper approach path. The locations of the VASI from CLC are shown in the following table.

WARDEN STREET

ALC: VENING STREET

7.00

an and af hear is by arts.

the second se

Approach Angle	Distance from CLC		
(degrees)	(feet)		
12	1830		
9	2456		
6	3701		
3	7423		

Each of these locations provided a glidepath which crossed over the centerline center microphone location at an altitude of 394 feet. This test program included approach operations utilizing 6, 9 and 12 degree glide slopes.

FIGURE 3.3

NOTES: Broken Line Indicates not to Scale. Metric Measurements to Nearest Meter.

TEST PLANNING AND BACKGROUND

4.0 <u>Test Planning/Background Activities</u> - This section provides a brief discussion of important administrative and test planning activities.

4.1 <u>Test Program Advance Briefings and Coordination</u> - A pre-test briefing was conducted approximately one month prior to the test. The meeting was attended by all pilots participating in the test, along with FAA program managers, manufacturer test coordinators, and other key test participants from the Dulles Airport community. During this meeting, the airspace safety and communications protocol were rigorously defined and at the same time test participants were able to iron out logistical and procedural details. On the worning of the test, a final brief meeting was convened on the flight line to review safety rules and coordinate last-minute changes in the test schedule.

4.2 <u>Communications Network</u> - During the helicopter noise measurement test, an elaborate communications network was utilized to manage the various systems and crews. This network was headed by a central group which coordinated the testing using three two-way radio systems, designated as Radios 1-3.

Radio 1 was a walkie talkie system operating on 169.275 MHz, providing communications between the VASI, National Weather Service, FAA Acoustic Measurement crew, the TSC acoustic team coordinator, and the noise test coordinating team.

Radio 2 was a second walkie talkie system operating on 170.40 MHz, providing communications between the TSC acoustic team coordinator and the TSC acoustic measurement teams.

17

PREVIOUS PAGE

Helicopter Noise Test Communication Network Schematic FIGURE 4.1

Radio 3, a multi-channel transceiver, was used as both an air-to-ground and ground-to-ground communications system. In air-to-ground mode it provided communications between VASI, helicopter flight crews, and noise test control on 123.175 MHz. In ground-to-ground mode it provided communications between the air traffic control tower (121.9 MHz), Page Avjet (the fuel source; 122.95 MHz), and noise test control.

A schematic of this network is shown in Figure 4.1.

4.3 Local Media Notification - Noise test program managers working through the FAA Office of Public Affairs released an article to the local media explaining that helicopter noise tests were to be conducted at Dulles Airport on July 22, the test day commencing around dawn and extending through midday. The article described general test objectives, flight paths, and rationale behind the very early morning start time (low wind requirements). In the case of a farm located very close to the airport, a member of the program management team personally visited the residents and explained what was going to be involved in the test. As a consequence of these efforts (it is assumed), there were very few complaints about the test program.

4.4 <u>Ambient Noise</u> - One of the reasons that the Dulles Runway 30 over-run area was selected as the test site was the low ambient noise level in the area. Typically one observed an A-Weighted LEQ on the order of 45 dB, with lominant transient noise sources primarily from the avian and insect families. The primary offender was the Collinus Virginianus, commonly known as the bobwhite, quail, or partridge. The infrequent intrusive

sound pressure levels were on the order of 55 dB centered in the 2000 Hz one-third octave band. A picture of the noisy offender and a narrow band analysis of its song may be found in Figure 4.2

As an additional measure for safety and for lessening ambient noise, a Notice to Airmen or NOTAM was issued advising aircraft of the noise test, and indicating that Runway 12/30 was closed for the duration of the test.

FIGURE 4.2

1.5 Sec. Avg.

DATA ACQUISITION AND GUIDANCE SYSTEMS

5.0 <u>Data Acquisition and Guidance Systems</u> - This section provides a detailed description of the test program data acquisition systems, with special attention given to documenting the operational accuracy of each system. In addition, discussion is provided (as needed) of field experiences which might be of help to others engaged in controlled helicopter noise measurements. In each case, the location of a given measurement system is described relative to the helicopter flight path.

5.1 <u>Approach Guidance System</u> - Approach guidance was provided to the pilot by means of a visual approach slope indicator (VASI) and through verbal commands from an observer using a ballon-tracking theodolite. (A picture of the theodolite is included in Figure 3.1, in Section 3.0.) The VASI and theodolite were positioned at the point where the approach path intercepted the ground.

The VASI system used in the test was a 3-light arrangement giving vertical displacement information within ± 0.5 degrees of the reference approach slope. The pilot observed a green light if the helicopter was within 0.5 degrees of the approach slope, red if below the approach slope, white if above. The VASI was adjusted and repositioned to provide a variety of approach angles. A picture of the VASI is included in Figure 3.1.

The theodolite system, used in conjunction with the VASI, also provided accurate approach guidance to the pilot. A brief time lag existed between the instant the theodolite observor perceived deviation, transmitted a

command, and the pilot made the correction; however, the theodolite crew was generally able to alert the pilot of approach path deviations (slope and lateral displacement) before the helicopter exceeded the limits of the one degree green light of the VAS1. Thus, the helicopter only occasionally and temporarily deviated more than 0.5 degrees from the reference approach path.

Approach paths of 6 and 9 degrees were used during the test program. Table 5.1 summarizes the VASI beam width at each measurement location for a variety of the approach angles used in this test.

TABLE 5.1

REFERENCE HELICOPTER ALTITUDES FOR APPROACH TESTS (all distances expressed in feet)

	MICROPHONE	MICROPHONE	MICROPHONE
	NO. 4	NO. 1	NO. 5
APPROACH ANGLE = 3°	A = 8010 B = 420 C = +70	A = 7518 B = 394 C = +66	A = 7026 B = 368 C = +62
6°	A = 4241	A = 3749	A = 3257
	B = 446	B = 394	B = 342
	C = +37	C = +33	C = +29
9°	A = 2980	A = 2488	A = 1362
	B = 472	B = 394	B = 316
	C = +27	C = +22	C = +18

A = distance from VASI to microphone location

- B = reference helicopter altitude
- C = boundary of the l degree VASI glide slope "beam width".

5.2 <u>Photo Altitude Determination Systems</u> - The helicopter altitude over a given microphone was determined by the photographic technique described in the Society of Automotive Engineers report AIR-902 (ref. 1). This technique involves photographing an aircraft during a flyover event and proportionally scaling the resulting image with the known dimensions of the aircraft. The camera is initially calibrated by photographing a test object of known size and distance. Measuring the resulting image enables calculation of the effective focal length from the proportional relationship:

(image length)/(object length) = (effective focal length)/(object distance)

This relationship is used to calculate the slant distance from microphone to aircraft. Effective focal length is determined during camera calibration, object length is determined from the physical dimensions of the aircraft (typically the rotor diameter or fuselage) and the image size is measured on the photograph. These measurements lead to the calculation of object distance, or the slant distance from camera or microphone to aircraft. The concept applies similarly to measuring an image on a print, or measuring a projected image from a slide.

The SAE AIR-902 technique was implemented during the 1983 helicopter tests with three 35mm single lens reflex (SLR) cameras using slide film. A camera was positioned 100 feet from each of the centerline microphone locations. Lenses with different focal lengths, each individually calibrated, were used in photographing helicopters at differing altitudes in order to more fully "fill the frame" and reduce image measurement error.

Artist's Drawing of the Photo Overhead Positioning System (Figure is not to scale.)

Photographer using the POP system to photograph the helicopter.

Photographs of the Boeing Vertol 234/Ch-47D, as taken by the photographer using the POP system.
The photoscaling technique assumes the aircraft is photographed directly overhead. Although SAE AIR-902 does present equations to account for deviations caused by photographing too soon or late, or by the aircraft deviating from the centerline, these corrections are not required when deviations are small. Typically, most of the deviations were acoustically insignificant. Consequently, corrections were not required for any of the 1983 test photos. 100

The photographer was aided in estimating when the helicopter was directly overhead by means of a photo-overhead positioning system (POPS) as illustrated in the figure and pictures in Figure 5.1 The POP system consisted of two parall(1 (to the ground) wires in a vertical plane orthogonal to the flight path. The photographer, lying beneath the POP system, initially positioned the camera to coincide with the vertical plane of the two guide wires. The photographer tracked the approaching helicopter in the viewfinder and tripped the shutter when the helicopter crossed the superimposed wires. This process of tracking the helicopter also minimized image blurring and the consequent elongation of the image of the fuselage.

A scale graduated in 1/32-inch increments was used to measure the projected image. This scaling resolution translated to an error in altitude of less than one percent. A potential error lies in the scaler's interpretation of the edge of the image. In an effort to quantify this error, a test group of ten individuals measured a selection of the fuzziest photographs from the helciopter tests. The resulting statistics

revealed that 2/3 of the participants were within two percent of the mean altitude. SAE AIR-902 indicates that the overall photoscaling technique, under even the most extreme conditions, rarely produces error exceeding 12 percent, which is equivalent to a maximum of 1 dB error in corrected sound level data. Actual accuracy varies from photo to photo; however, by using skilled photographers and exercising reasonable care in the measurements, the accuracy is good enough to ignore the resulting small error in altitude.

Tests were recently conducted in West Germany which compared this camera method with the more elaborate Kinotheodolite tracking method to discover which was best for determining overflight height and overground speed. Both methods were found to be reasonably accurate; thus, the simpler camera method remains appropriate for test purposes (ref. 2).

5.3 <u>Cockpit Photo Data</u> - During each flight operation of the test program, cockpit instrument panel photographs were taken with a 35mm SLR camera, with an 85mm lens, and high speed slide film. These pictures served as verification of the helicopter's speed, altitude, and torque at a particular point during a test event. The photos were intended to be taken when the aircraft was directly over the centerline-center microphone site #1 (see Figure 3.3). Although the photos were not always taken at precisely that point, the pictures do represent a typical moment during the test event. The word <u>typical</u> is important because the snapshot freezes instrument readings at one moment in time, while actually the

readings are constantly changing by a small amount because of instrument fluctuation and pilot input. Thus, fluctuations above or below reference conditions are to be anticipated. A reproduction of a typical cockpit photo is shown in Figure 5.2. This data acquisition system was augmented by the presence of an experienced cockpit obersver who provided additional documentation of operational parameters.

For future tests, the use of a video tape system is being considered to acquire a continuous record of cockpit parameters during each data run. Preliminary FAA studies (April 1984) indicate that this technique can be successful using off the shelf equipment. When slides were projected onto a screen, it was possible to read and record the instrument readings with reasonable accuracy.

FIGURE 5.2

5.4 <u>Upper Air Meteorological Data Acquisition/NWS: Sterling, VA</u> - The National Weather Service (NWS) at Sterling, Virginia provided upper air meteorological data obtained from balloon-borne radiosondes. These data consisted of pressure, temperature, relative humidity, wind direction, and speed at 100' intervals from ground level through the highest test altitude. The balloons were launched approximately 2 miles north of the measurement array. To slow the ascent rate of the balloon, an inverted parachute was attached to the end of the flight train. The VIZ Accu-Lok (manufacturer) radiosonde employed in these tests consisted of sensors which sampled the ambient temperature, relative humidity, and pressure of the air. Each radiosonde was individually calibrated by the manufacturer.

The sensors were coupled to a radio transmitter which emitted an RF signal of 1680 MHz sequentially pulse-modulated at rates corresponding to the values of sampled meteorological parameters. These signals were received by the ground-based tracking system and converted into a continuous trace on a strip chart recorder. The levels were then extracted manually and entered into a minicomputer where calculations were performed. Wind speed and direction were determined from changes in position and direction of the "flight train" as detected by the radiosonde tracking system. Figure 5.3 shows technicians preparing to launch a radiosonde.

FIGURE 5.3

The manufacturer's specifications for accuracy are:

Pressure = +4 mb up to 250 mb

Temperature = $+0.5^{\circ}$ C, over a range of $+30^{\circ}$ C to -30° C

Humidity = +5% over a range of +25°C to 5°C

The National Weather Service has determined the "operational accuracy" of a radiosonde (as documented in an unpublished report entitled "Standard f r Weather Bureau Field Programs", 1-1-67) to be as follows:

Pressure = ± 2 mb, over a range of 1050 - 5 mb Temperature = $\pm 1^{\circ}$ C, over a range of $\pm 50^{\circ}$ C to -70° C Humidity = $\pm 5\%$ over a range of $\pm 40^{\circ}$ C to -40° C

The temperature and pressure data are considered accurate enough for general documentary purposes. The relative humidity data are the least reliable. The radiosonde reports lower than actual humidities when the air is near saturation. These inaccuracies are attributable to the slow response time of the humidity sensor to sudden changes. (Ref. 3).

For future tesing, the use of a SODAR (acoustical sounding) system is being considered. The SODAR is a measurement system capable of defining the micro-wind structure, making the influences of wind speed, direction and gradient easier to identify and to assess in real time (Ref. 4).

5.5 <u>Surface Meteorological Data Acquisition/NWS: Dulles Airport</u> - The National Weather Service Station at Dulles provided temperature, windspeed, and wind direction on the test day. Readings were noted every 15 minutes. These data are presented in Appendix H. The temperature transducers were located approximately 2.5 miles east of the test site at a height of 6 feet (1.8 m) above the ground, the wind instruments were at a height of 30 feet (10 m) above ground level. The dry bulb thermometer and dew point transducer were contained in the Bristol (manufacturer) HO-61 system operating with \pm one degree accuracy. The windspeed and direction were measured with the Electric Speed Indicator (manufacturer) F420C System, operating with an accuracy of 1 knot and $\pm 5^{\circ}$.

On-site meterological data were also obtained by TSC personnel using a Climatronics (manufacturer) model EWS weather system. The anemometer and temperature sensor were located 10 feet above ground level at noise site 4. These data are presented in Appendix I. The following table (Table 5.2) identifies the accuracy of the individual components of the EWS system.

ТΔ	R	Ŧ	R -	5		2
IU	υ	ᄂ	Ľ4 –		٠	۷.

Sensor	Accuracy	Range	Time Constant
Windspeed	+.025 mph or 1.5%	0-100 mph	5 sec
Wind Direction	<u>+1.5%</u>	0-360° Mech 0-540° Elect	15 sec
Relative Humidity	+2% 0–100% RH	0-100% RH	10 sec
Temperature	<u>+</u> 1.0°F	-40 to +120°F	10 sec

After "detection" (sensing), the meteorological data are recorded on a Rustrak (manufacturer) paperchart recorder. The following table (Table 5.3) identifies the <u>range and resolutions associated with the recording</u> of each parameter.

TABLE 5.3

Sensor	Range	Chart Resolution
Windspeed	0-25 TSC mod 0-50 mph	<u>+</u> 0.5 mph
Wind Direction	0-540°	<u>+</u> 5°
Relative Humidity	0-100% RH	<u>+</u> 2% RH
Temperature	-40° to 120°F	+1°F

5.6.0 <u>Noise Data Acquisition Sytems/System Deployment</u> - This section provides a detailed description of the acoustical measurement systems employed in the test program along with the deployment plan utilized in each phase of testing.

5.6.1 <u>Description of TSC Magnetic Recording Systems</u> - TSC personnel deployed Nagra two-channel direct-mode tape recorders. Noise data were recorded with essentially flat frequency response on one channel. The same input data were weighted and amplified using a high frequency pre-emphasis filter and were recorded on the second channel. The pre-emphasis network rolled off those frequencies below 10,000 Hz at 20 dB per decade. The use of pre-emphasis was necessary in order to boost the high frequency portion of the acoustical signal (such as a helicopter spectrum) characterized by large level differences (30 to 60 dB) between

Acoustical Measurement Instrumentation

the high and low frequencies. Recording gains were adjusted so that the best possible signal-to-noise ratio would be achieved while allowing enough "head room" to comply with applicable distortion avoidance requirements.

IRIG-B time code synchronized with the tracking time base was recorded on the cue channel of each system. The typical measurement system consisted of a General Radio 1/2 inch electret microphone oriented for grazing incidence driving a General Radio P-42 preamp and mounted at a height of four feet (1.2 meters). A 100-foot (30.5 meters) cable was used between the tripod and the instrumentation vehicle located at the perimeter of the test circle. A schematic of the acoustical instrumentation is shown in Figure 5.4.

Figure 5.4 also shows the cutaway windscreen mounting for the ground microphone. This configuration places the lower edge of the microphone diaphram approximately one-half inch from the plywood (4 ft by 4 ft) surface. The ground microphone was located off center in order to avoid natural mode resonant vibration of the plywood square.

5.6.2 <u>FAA Direct Read Measurement Systems</u> - In addition to the recording systems deployed by TSC, four direct read, Type-1 noise measurement systems were deployed at selected sites. Each noise measurement site consisted of an identical microphone-preamplifier system comprised of a General Radio 1/2-inch electret microphone (1962-9610) driving a General Radio P-42 preamplifier mounted 4 feet (1.2m) above the ground and oriented for grazing incidence. Each microphone was covered with a 3-inch windscreen.

FIGURE 5.5

Acoustical Measurement Instrumentation

Direct Read Noise Measurement System

÷.

Three of the direct read systems utilized a 100-foot cable connecting the microphone system with a General Radio 1988 Precision Integrating Sound Level Meter (PISLM). In each case, the slow response A-weighted sound level was output to a graphic level recorder (GLR). The GLRs operated at a paper transport speed of 5 centimeters per minute (300 cm/hr). These systems collected single event data consisting of maximum A-weighted Sound Level (AL), Sound Exposure Level (SEL), integration time (T), and equivalent sound level (LEQ).

The fourth microphone system was connected to a General Radio 1981B Sound Level Meter. This meter, used at site 7H for static operations only, provided A-weighted Sound Level values which were processed using a micro sampling technique to determine LEQ.

All instruments were calibrated at the beginning and end of each test day and approximately every hour in between. A schematic drawing of the basic direct read system is shown in Figure 5.5.

5.6.3 <u>Deployment of Acoustical Measurement Instrumentation</u> - This section describes the deployment of the magnetic tape recording and direct read noise measurement systems.

During the testing, TSC deployed six magnetic tape recording systems. During the flight operations, four of these recording system were located at the three centerline sites: one system at site 4, one at site 5, and

two at centerline center with the microphone of one of those systems at 4 feet above ground, the microphone of the other at ground level. The two remaining recording systems were located at the two sidelines sites. The FAA deployed three direct read systems at the three centerline sites during the flight operations. Figure 5.6 provides a schematic drawing of the equipment deployment for the flight operations.

In the case of static operations, only four of the six recorder systems were used. The recorder system with the 4-foot microphone at site 1 moved to site 1H. The recorders at sites 4 and 5 moved to 4H and 5H respectively. The recorder at site 2, the south sideline site, was also used. The three direct read systems were moved from the centerline sites to sites 5H, 2, and 4H. The fourth direct read system was employed at site 7H. Figure 5.7 provides a schematic diagram of the equipment deployment for the static operations.

ACOUSTICAL DATA REDUCTION

6.0 <u>Acoustical Data Reduction</u> - This section describes the treatment of tape recorded and direct read acoustical data from the point of acquisition to point of entry into the data tables shown in the appendices of this document.

6.1 <u>TSC Magnetic Recording Data Reduction</u> - The analog magnetic tape recordings analyzed at the TSC facility in Cambridge, Massachusetts were fed into magnetic disc storage after filtering and digitizing using the GenRad 1921 one-third octave real-time analyzer. Figure 6.1 is a picture of the TSC facility; Figure 6.2 is a flow chart of the data collection, reduction and output process accomplished by TSC personnel. Recording system frequency response adjustments were applied, assuring overall linearity of the recording and reduction system. The stored 24, one-third octave sound pressure levels (SPLs) for contiguous one-half second integration periods making up each event comprise the base of "raw data." Data reduction followed the basic procedures defined in Federal Aviation Regulation (FAR) Part 36 (Ref. 5). The following sections describe the steps involved in arriving at final sound level values.

FIGURE 6.1

FIGURE 6.2

÷

Acoustical Data Reduction/Instrumentation

6.1.1 <u>Ambient Noise</u> - The ambient noise is considered to consist of both the acoustical background noise and the electrical noise of the measurement system. For each event, the ambient level was taken as the five to ten-second time averaged one-third octave band taken immediately prior to the event. The ambient noise was used to correct the measured raw spectral data by subtracting the ambient level from the measured noise levels on an energy basis. This subtraction yielded the corrected noise level of the aircraft. The following execptions are noted:

1. At one-third octave frequencies of 630 Hz and below, if the measured level was within 3 dB of the ambient level, the measured level was corrected by being set equal to the ambient. If the measured level was less than the ambient level, the measured level was not corrected.

2. At one-third octave frequencies above 630 Hz, if the measured level was within 3 dB or less of the ambient, the level was identified as "masked."

6.1.2 <u>Spectral Shaping</u> - The raw spectral data, corrected for ambient noise, were adjusted by sloping the spectrum shape at -2 dB per one-third octave for those bands (above 1.25 kHz) where the signal to noise ratio was less than 3 dB, i.e., "masked" bands. This procedure was applied in cases involving no more than 9 "masked" one-third octave bands. The shaping of the spectrum over this 9-band range was conducted to minimize EPNL data loss. This spectral shaping methodology deviates from FAR-36 procedures in that the extrapolation includes four more bands than normally allowed.

6.1.3 <u>Analysis System Time Constant/Slow Response</u> - The corrected raw spectral data (contiguous linear 1/2 second records of data) were

processed using a sliding window or weighted running logarithmic averaging procedure to achieve the "slow" dynamic response equivalent to the "slow response" characteristic of sound level meters as required under the provisions of FAR-36. The following relationship using four consecutive data records we used:

$$L_i = 10 \text{ Log } [0.13(10.^{0.1L}i^{-3})+0.21(10.^{0.1L}i^{-2})+0.27(10.^{0.1L}i^{-1})+0.39(10.^{0.1L}i)]$$

where L_i is the one-third octave band sound pressure level for the ith one-half second record number.

6.1.4 <u>Bandsharing of Tones</u> - All calculations of PNLTM included testing for the presence of band sharing and adjustment in accordance with the procedures defined in FAR-36, Appendix B, Section B 35.2.3.3, (Ref. 6).

6.1.5 <u>Tone Corrections</u> - Tone corrections were computed using the helicopter acoustical spectrum from 24 Hz to 11,200 Hz, (bands 14 through 40). Tone correction values were computed for bands 17 through 40, the same set of bands used in computing the EPNL and PNLT. The initiation of the tone correction procedure at a lower frequency reflects recognition of the strong low frequency tonal content of helicopter noise. This procedure is in accordance with the requirements of ICAO Annex 16, Appendix 4, paragraph 4.3. (Ref. 7).

5.1.6 <u>Other Metrics</u> - In addition to the EPNL/PNLT family of metrics and the SEL/AL family, the overall sound pressure level and 10-dB down duration times are presented as part of the "As Measured" data set in Appendix A. Two factors relating to the event time history (distance duration and speed corrections, discussed in a later section) are also presented.

6.1.7 <u>Spectral Data/Static Tests</u> - In the case of static operations, thirty-two seconds of corrected raw spectral data (64 contiguous 1/2 second data records) were energy averaged to produce the data tabulated in Appendix C. The spectral data presented is "as measured" at the emission angles shown in Figure 6.3, established relative to each microphone location. Also included in the tables are the 360 degree (eight emission angles) average levels, calculated by both arithmetic and energy averaging.

Note that "masked" levels (see Section 6.1.1) are replaced in the tables of Appendix C with a dash (-). The indexes shown, however, were calculated with a shaped spectra as per Section 6.1.2.

FIGURE 8.3

Acoustical Emission Angle Convention

Ţ

Direct Read Data Reduction

.

u mar u an an an an an an

. .

. .

6.2 <u>FAA Direct Read Data Reduction</u> - Figure 6.4 provides a flow diagram of the data collection, reduction and output process effected by FAA personnel. FAA direct read data was reduced using the Apple IIe microcomputer and the VISICALC[®] software package. VISICALC[®] is an electronic worksheet composed of 256 x 256 rows and columns which can support mathematical manipulation of the data placed anywhere on the worksheet. This form of computer software lends itself to a variety of data analyses, by means of constructing templates (worksheets constructed for specific purposes). Data files can be constructed to contain a variety of information such as noise data and position data using a file format called DIF (data interchange format).

Data analysis can be performed by loading DIF files onto analysis templates. The output or results can be displayed in a format suitable for inclusion in reports or presentations. Data tables generated using these techniques are contained in Appendices B and D, and are discussed in Section 9.0.

6.2.1 <u>Aircraft Position and Trajectory</u> - A VISICALC® DIF file was created to contain the photo altitude data for each event of each test series for the test conducted. These data were input into a VISICALC® template designed to perform a 3-point regression through the photo altitude data from which estimates of aircraft altitudes could be determined for each microphone location.

6.2.2 <u>Direct Read Noise Data</u> - Another template was designed to take two VISICALC® DIF files as input. The first contained the "as measured" noise levels SEL and dBA obtained from the FAA direct read systems and the 10-dB duration time obtained from the graphic level recorder strips, for each of the three microphone sites.

The second consisted of the estimates of aircraft altitude over three microphone sites. Calculations using the two input files determined two figures of merit related to the event duration influences on the SEL energy dose metric. This analysis is described in Section 9.4. All of the available template output data are presented in Appendix B.

TEST SERIES DESCRIPTION

7.0 <u>Test Series Description</u> - The noise-flight test operations schedule for the Boeing-Vertol CH-47D consisted of two major parts.

The first part or core test program included the ICAO certification test operations (takeoff, approach, and level flyover) supplemented by level flyovers at various altitudes (at a constant altitude), at various airspeeds (at a constant altitude), at different rotor RPM's and at civilian and military trims. <u>Trim</u> refers to the angle of the aft rotor to the foreward rotor. In addition to the ICAO takeoff operation, a second takeoff flight series was included using the military trim. Alternative approach operations were also included - one utilizing a three degree approach angle, the other a six degree approach angle using military trim - to compare with the six degree ICAO approach data.

The second part of the test program consisted of static operations designed to asses helicopter directivity patterns and examine ground-to-ground propagtion.

The information presented in Table 7.1 describes the Sikorsky S-76 test schedule by test series, each test series representing a group of similar events. Each noise event is identified by a letter prefix, corresponding to the appropriate test series, followed by a number which represents the numerical sequence of event (i.e., Al, A2, A3, A4, B5, B6,...etc.). In some cases the actual order of test series may not follow alphabetically, as a D1, D2, D3, D4, E5, E6, E8, H9, H10, H11,... etc.). In the case of static operations the individual events are reported by the acoustical emission angle referenced to each individual microphone location (i.e., J120, J165, J210, J255, J300, J345, J030, J75). In Table 7.1, the test target operational parameters for each series are specified along with

approximate start and stop times. These times can be used to reference corresponding meteorological data in Appendix G. Timing of fuel breaks are also identified so that the reader can estimate changes in helicopter weight with fuel burn-off. Actual operational parameters and position information for specific events are specified in the appendices of this document.

Figures 7.1, 7.2 and 7.3 present the test flight configuration for the takeoff, approach and level flyover operations. A schematic of the actual flight tracks is available in Figure 3.3.

TABLE 7.1

TEST SUMMARY

BOEING-VERTOL CH-47D

AND RUN						
NUMBERS	DESCRIPTION OF SERIES	RPM	TRIM	START TIME	FINISH	TIME
М	HOVER-IN-GROUND-EFFECT	225	234	6:47 am	6:59	200
N(A)	STATIC/FLIGHT-IDLE RPM	225	234	7:01 am	7:46	3 41
N(B)	STATIC/GROUND-IDLE RPM	225	234	7:01 am	7:46	am
0	HOVER-OUT-OF-GROUND-EFFECT	225	234	7:50 am	8:04	am
				FUEL BREA	K	
A	LFO, 500 ft.	225	234	9:12 am	9:27	a m
В	LFO, 500 ft.	225	D	9:31 am	9 :38	am
С	LFO, 500 ft.	220	234	9:41 am	9:50	an
D	LFO, 500 ft.	220	234	9:53 am	10:07	80
E	LFO, 500 ft	220	234	10:14 am		
F	LFO. 1000 ft.	220	234	12•22 nm	12.35	-
H	APPROACH (ICAO), 85 kts.	225	234	12.22 pm	1-04	pm.
I	APPROACH (MILITARY), 70 kts.	225	D	1:08 pm	1:28	pm
				FUEL BREA	K	
G	TAKEOFF (ICAO), 85 kts.	225	234	2:01 pm	2:28	DWI
J	TAKEOFF, 85 kts.	225	234	2:42 pm	2:49	pm.
К	APPROACH, 100 kts.	220	234	2:42 pm	2:49	pm
L	TAKEOFF (MILITARY), 70 kts.	225	D	2:53 pm	2:5 9	pm

Figure 7.1

Helicopter Takeoff Noise Tests

The take-off flight path shall be established as follows:

(a) the helicopter shall be established in level flight at the best rate of climb speed, V_{v} , ± 3 knots, of the maximum speed of the curve contiguous to the ordinate of the limiting height-speed envelope +3 knots (± 3 knots), whichever is greater, and, at a height of 20m (66 ft) above the ground until a point 500m (1,640 ft) before the flight path reference point is reached:

Takeott Takeott Flight

- (b) upon reaching the point specified in (a) above, the power shall be increased to maximum take-off power and a steady climb initiated and maintained over the noise measurement time period;
- (c) airspeed established in (a) above shall be maintained throughout the take-off reference procedure;

- (d) the steady climb shall be made with the rotor speed stabilized at the maximum rpm for power-on operations
- (e) a constant take-off configuration selected by the applicant shall be maintained throughout the takeoff reference procedure except that the landing gear may be retracted; and
- (f) the weight of the helicopter shall be the maximum take-off weight.

Takeoft Takeoft Point Microphone Positions

1504

Ground

Masi

Figure 7.2

Helicopter Approach Noise Tests

The approach procedure shall be established as follows:

- (a) the helicopter shall be stabilized and following a 6.0° approach path;
- (b) the approach shall be made at a stabilized airspeed equal to the best rate of climb speed V_y , ± 3 knots, or the maximum speed of the curve contiguous to the ordinate of the limiting height-speed envelope +3 knots (± 3 knots), whichever is the greater, with power stabilized during the approach and over the flight path reference point, and continued to 50 feet above ground level
- (c) the approach shall be made with the rotor speed stabilized at the maximum rpm for power-on operations.
- (d) the constant approach configuration used in airworthiness certification tests, with the landing gear extended, shall be maintained throughout the approach reference procedure; and
- (e) the weight of the helicopter shall be the maximum landing weight.

Flight path

Approach

Approach

120M

Microphone Positions

les was

Ground Track

l'sour

Figure 7.3

Helicopter Flyover Noise Tests

The flyover procedure shall be established as follows:

 (a) the helicopter shall be stabilized in level flight overhead the flight path reference point at a height of 150 m (492 ft);

Hred Meily lethorizoh

- (b) a speed of 0.9V_H or 0.9V_{NE}, whichever is the lesser, shall be maintained throughout the overflight reference procedure;
- NOTE: V_H is the maximum speed in level flight at maximum continuous power.

V_{NE} is the never exceed speed.

- (c) the overflight shall be made with the rotor speed stabilized at the maximum rpm; for power-on operations.
- (d) the helicopter shall be in the cruise configuration; and
- (e) the weight of the helicopter shall be the maximum take-off weight.

52

150M Alt.

Microphone Positions

hosi

Ground Track

ison.

DOCUMENTARY ANALYSES

8.0 <u>Documentary Analyses/Processing of Trajectory and Meteorological</u> <u>Data</u> - This section contains analyses which were performed to document the flight path trajectory and upper air meteorological characteristics during the BV-234/CH-47D test program.

8.1 <u>Photo-Altitude Flight Path Trajectory Analyses</u> - Data acquired from the three centerline photo-altitude sites were processed on an Apple IIe microcomputer using a VISICALC[®] (manufacturer) electronic spread sheet template developed by the authors for this specific application. The scaled photo-altitudes for each event (from all three photo sites) were entered as a single data set. The template operated on these data, calculating the straight line slope in degrees for the helicopter position between each pair of sites. In addition, a linear regression analysis was performed in order to create a straight line approximation to the actual flight path. This regression line was then used to compute estimated altitudes and CPA's (Closest Point of Approach) referenced to each microphone location (Note: Photo sites were offset from microphone sites by 100 feet). The results of this analysis are contained in the tables of Appendix F.

<u>Discussion</u> - While the photo-altitude data do provide a reasonable description of the helicopter trajectory and provide the means to effect distance corrections to a reference flight path (not implemented in this report), there is the need to exercise caution in interpretation of the data. The following excerpt makes an important point for those trying to relate the descent profiles (in approach test series) to resulting acoustical data.

In our experience, attempts by the pilot to fly down a very narrow VASI beam produce a continuously varying rate of descent. Thus while the <u>mean</u> flight path is maintained within a reasonable degree of <u>test</u> precision, the rate of descent (important parameter connected with blade/vortex interactions) at any instant in time may vary much more than during operational flying. (Ref. 8)

Further, care is necessary when using the regression slope and the regression estimated altitude; one must be sure that the site-to-site slopes are similiar (approximate constant angle) and that they are in agreement with the regression slope. If these slopes are not in agreement, then use photo altitude data along with the site-to-site slopes in calculating altitude over microphone locations.

And and the statement of the statement o

Also included for reference are the mean values and standard deviations for the data collected at each site, for each series. These data display the variability in helicopter position within a given test series. The difference in the degree of variation from one similar test series to the next may provide an indication of changes in micro-meterological, (winds and turbulence). The differences in the degree of variation from one type of operation to the next type of op eration provides and indication of inherent stability or lackof inherent stability associated with repetition of a nominally identical operation

8.2 <u>Meteorological Data</u> - This section documents the course variation in upper air meteorological parameters as a function of time for the June 8 test program.

The National Weather Service office in Sterling, Virginia provided preliminary data processing resulting in the data tables shown in Appendix H. Supplementary analyses were then under taken to develop time histories of various parameters over the period of testing for selected altitudes. Each time history was constructed using least square linear regression techniques for the five available data points (one for each launch). The plots attempt to represent the gross (macro) meteorological trends over the test period.

<u>Temperature</u>: Figure 8.1 shows the temperature time history for July 12, 1983 at the 500, 1000 and 2000 foot levels. Data recieved from the National Weather Service (NWS) ground station reveals that on July 12 a temperature inversion existed from 6:00 to 9:00am. Static operations were conducted on the BV 234 from 7 00 to 8:00am; level flyover operations were conducted from 9:00am to 12:00pm, followed by takeoff and approaches operations.

Acoustic theory states that during LemperaLure inversions, refraction/reflection of acoustical energy occurs, resulting in meteorlog.cally influenced noise levels.

<u>Relative Humidity</u>: Figure 8.2 shows the time history of relative humidity for July 12, 1983 at the 500, 1000 and 2000 foot levels. Data recieved from the National Weather Service (Dulles) ground station fills in the

picture of relative humidity as a function of time from the surface to the 2000 foot level. With this data it can be seen that surface R/H was 93% at $\dot{6}$:00am and finially decreased to 43% at 12:00pm in accordance with the burn off of surface moisture due to solar heating.

<u>Wind Data</u>: Figures 8.3 and 8.4 show the time histories of head/tail and cross wind components for July 12, 1983. From Figure 8.3 it is seen that there existed a head wind of 14 knots at 6:00am, which decreased to about 7 knots at 11:00am. Static operations were conducted from 6:47am to 8:05am followed by level flyovers and then takeoff and approach operations. In a similar manner Figure 8.4 shows a cross wind magnitude of 2 to 3 knots consistently from 6:00 to 11:00am. The reader should note that whether a head/tail wind was experienced during a flight depends on the direction of flight, and in a similar manner the same can be said for the cross wind component.

direction.

This plot indicates a headwind for operations in the 300 degree magnetic direction.

HEAD/TAIL WIND

FIGURE 8.3

معمده والمراجع والمعالم والمراجع المعاد ومراجع والمراجع والمراجع والمراجع والمستعمل والمراجع والمعاد والمراجع والمحافظ

TIME

SPEED VS

UNIW

JULY 12 (DIR 300-120)

EXPLORATORY ANALYSES AND DISCUSSIONS

9.0 Exploratory Analyses and Discussion - This section is comprised of a series of distinct and separate analyses of the data acquired during Boeing Vertol 234/CH-47D noise measurement program. In each analysis section an introductory discussion is provided describing pre-processing of data (beyond the basic reduction previously described), followed by presentation of either a data table, graph(s), or reference to appropriate appendices. Each section concludes with a discussion of salient results and presentation of conclusions.

The following list identifies the analyses which are contained in this section.

- 9.1 Variation in noise levels with airspeed for level flyover operations
- 9.2 Static data analysis: source directivity and hard vs. soft propagation characteristics
- 9.3 Comparison of noise data: 4-foot vs. ground microphones
- 9.4 Duration effect analysis
- 9.5 Analysis of variability in noise levels for two sites equidistant over similar propagation paths
- 9.6 Variation in noise levels with airspeed and rate of descent for approach operations
- 9.7 Analysis of ground-to-ground acoustical propagation for a nominally soft propagation path
- 9.8 Air-to-ground acoustical propagation analysis

9.1 <u>Variation in Noise levels for Level Flyover Operations</u> - This section analyzes the variation in noise levels for level flyover operations under various conditions.

9.1.1 <u>Variation in Noise Levels with Different Airspeeds</u> - This section analyzes the variation in noise levels for level flyover operations as a function of airspeed. Data acquired from the centerline-center location (site 1) magnetic recording system (see Appendix A) have been utilized in this analysis. All data are "as measured", uncorrected for the minor variations in altitude from event to event.

<u>Discussion</u> - It has been observed that as a helicopter increases its airspeed, two acoustically related events take place. First, the noise event duration is decreased as the helicopter passes more quickly. Second, the source acoustical emission characteristics change. These changes reflect the aerodynamic effects which accompany an increase in speed. At speeds higher than the speed for minimum power, the power required (torque) increases with an increase in airspeed. These influences lead to a noise intensity versus airspeed relationship generally approximated by a parabolic curve. At first, noise levels decrease with airspeed, reaching a minimum at the speed for minimum power; then an upturn occurs as a consequence of increasing advancing blade tip Mach number effects, which in turn generate impulsive noise.

The noise versus airspeed plots for the BV 234/CH-47D are shown for various acoustical metrics in Figures 9.1 through 9.4, for the test series conducted with BV 234 trim and an RPM of 220. These plots are consistent with the expected parabolic nature of the noise versus airspeed

FIGURE 9.1

BU-234/CH 47D

FIGURE 9.2

8H-234-CH 47D

BOEING VERTOL 234/CH-47D LEVEL FLYOVER PLOTS

relationship described above, although displaying only the minimal increasing portion of the curve. Each plotted point represents a test series average noise level and the corresponding target indicated airspeed.

For other helicopters, it has been observed that noise increases most rapidly when the Mach number advances beyond a value of about 0.80. Table 9.1 shows the relationship between indicated airspeed and advancing blade tip Mach number for the BV 234/CH-47D at the two operational rotor speeds. Because this helicopter has a tandem main rotor system, one rotor rotating clockwise while the other rotates counterclockwise, there is an advancing (and a retreating) blade on either side of the helicopter at all times. This circumstance would tend to minimize left-side, right-side differential noise directivity associated with the advancing blade (usually observed for single main rotor helicopters).

TABLE 9.1

IAS (KTS)	MA (220 RPM)	MA (225 RPM)
100	. 76	.77
110	.77	. 79
120	. 79	. 80
130	. 80	. 82
140	. 82	. 83
150	. 83	. 85

9.1.2 <u>Variation in Noise Level (for a Constant Airspeed) with Variation</u> <u>in Trim and Rotor Speed</u> - This section provides a glimpse at the variation in noise level with change in trim and rotor speed for a nominally constant target airspeed. While a more extensive matrix of test

conditions would be required to establish generalized noise level/trim and noise level/RPM relationships, the results shown below in Table 9.2 do provide a starting point.

TABLE 9.2

				SITE #1			
TEST SERIES	IAS	RPM	TRIM	AVG SEL	AVG DBA		
A LFO (ICAO) B Military LFO C LFO	135 135 135	225 225 220	234 CH-47D 234	87.1 89.2 88.2	79.2 82.0 80.8		

The test series done with 225 RPM and 234 trim (Series A) displays lower levels than the corresponding series with CH-47D trim. These results are as expected, since the 234 trim is the Fly Neighborly configuration. What is surprising, however, is the lower levels for series A compared with the lower RPM series C.

9.2 <u>Static Operations: Analysis of Source Directivity and Hard vs. Soft</u> <u>Path Propagation Characteristics</u> - This analysis is comprised of two principal components. First, the plots shown in Figures 9.5 through 9.8 depict the time averaged directivity patterns for various static operations for measurement sites located equidistant from the hover point. The second component involves the fact that one of the two sites lies separated from the hover point by a hard concrete surface, while the other site is separated from the hover point by a soft grassy surface. The difference in the propagation of sound over the two disparate surfaces is reflected in the difference between the upper and lower curves in each plot. Figure 9.9 depicts the microphone positions and hard and soft paths in relation to the helicopter movement.

Time averaged (approximately 60 seconds) data are shown for acoustical emission directivity angles (see Figure 6.3) established every 45 degrees from the nose of the helicopter (zero degrees), in a clockwise fashion. Magnetic recording data plotted in these figures can be found in Appendix C for microphones 5H and 2.

<u>Discussion</u> - The following paragraphs highlight salient features observed in the static test data.

<u>HIGE</u> - Figure 9.5 shows the noise emission pattern for the BV 234/CH-47D in the hover-in-ground effect (HIGE) configuration (approximately feet above the ground). This figure shows dramatically an assymetrical radiation pattern in which we see the maximum noise occurring at the 45° emission angle, while the minimum noise is directed from the 270° emission angle. This asymetrical pattern may be associated with forward/aft

rotor vortex interaction. The maximum difference in noise levels due to surface characteristics is observed at the 270° emission angle to be 6 dB.A final point of interest in the HIGE plot is the generally small difference observed between the hard and soft propagation paths.

<u>HOGE</u> - Figure 9.6 shows the noise emission pattern for the BV 234/CH-47D in the hover-out-of-ground effect (HOGE) configuration (approximately feet off the ground). As seen from the figure, the BV 234/CH-47D displays a noise emission pattern which appears to be dominant in the right fore-quadrant corresponding to an acoustic emission angle of 45°. The discontinuity in the top curve at the 270° emission angle is associated with an instrumentation problem. The maximum difference in noise levels between the hard and soft paths is seen to occur at the 180° emission angle, and is about 4 dB, clearly demonstrating the potential reduction in noise levels associated with soft surface characteristics.

FIGURE 9.5

FIGURE 9.6

<u>Ground Idle</u> - Figure 9.7 shows the acoustic emission pattern for the BV 234/CH-47D in the ground idle (GI) configuration. In this figure, the left side of the helicopter is seen to be noisier than the right. This result is most likely associated with changes in the acoustical spectrum which occur with the lower rotor RPM utilized in this configuration. The maximum noise level is seen to occur at the 225° emission angle. The maximum difference noise levels due to surface characteristics is about 8 dB occurring to either side of the tail, at the 135° and 225° emission angles.

<u>Flight Idle</u> - Figure 9.8 shows the acoustic emission pattern for the BV 234/CH-47D in the flight idle (FI) configuration. This figure shows a nearly omni-directional radiation pattern as observed for the soft site. In the hard path scenario, one observes a maximum occurring on either side of the tail in an almost symmetrical manner. The maximum difference in noise levels between hard and soft paths is 6 to 8 dB, occurring at the 135° emission angle.

FIGURE 9.7

FIGURE 9.8

Environmental Impact - Table 9.3, shown below, presents observations concerning noise impact and acceptability and are based on consideration of typical urban/community ambient noise levels and the levels of urban transportation noise sources. Interpretations assume that event durations reflect static operational scenarios (usually 1 minute to 15 minutes). In general, the interpretation of environmental impact requires careful consideration of the ambient sound levels in the vicinity of the specific heliport under consideration. A useful document for further interpretation is Reference 9.

Table 9.3

A-Weighted Noise Level Ranges

60 dB	-	Urban ambient noise level
Mid 60'	s -	Urban ambient noisc level
70 dB	-	Noise level of minor concern
Mid 70'	s -	Moderately intrusive noise level
80 dB	-	Clearly intrusive noise level
Mid 80'	s -	Potential Problems due to noise
90 dB	-	Noise level to be avoided for any length of time.

Ŧ

Helicopter Hover Noise Test

9.3 <u>Comparison of Measured Sound Levels: 4 Foct vs. Ground Microphones</u> -This analysis addresses the comparability of noise levels measured at ground level and at 4 feet above the ground. The topic is discussed in the context of noise certification testing requirements. The analysis involves examination of differences between noise levels acquired for ground mounted and 4-ft mounted microphone systems. The objectives of this analysis are: 1) observe the value and variability of ground/4-ft microphone differences and identify the degree of phase coherence and 2) examine the variation with operational configuration.

The data employed in this analysis are from the microphone site #1 magnetic recording system (Appencix A). The mean differences between the ground and four foot microphones are shown in Table 9.4 for twelve different test series.

In conducting this analysis, our initial assumption was that the ground-mounted microphone experiences phase coherent pressure doubling (a reasonable assumption at the frequencies of interest). At the 4-foot microphone one would expect to see a lower value, somewhere within the range of 0 to 3 dB, depending on the degree of random verses coherent phase between incident and reflected sound waves. It is also possible to experience phase cancellation between the two sound paths. If cancellation occurs at dominant frequencies, then one is likely to observe noise levels at the 4-foot microphone more than 3 dB below the ground microphone values. In fact, significant cancellation is observed with instances of 5.2 dB (weighted metric) lower levels at the 4-foot microphone. Figure 9.10 provides a schematic of the various "difference

regions" associated with different relationships between incident and reflected sound waves.

<u>Discussion</u> - It is argued that acquisition of data from ground-mounted microphones provides a cleaner spectrum, closer to the spectrum actually emitted by the helicopter--that is, not influened by a mixture of constructive and destructive ground reflections. Theoretically, one would be interested in correcting ground-based data to levels expected at 4 feet or vice versa in order to maintain equally stringent regulato¹⁰ policy. In other words, to change a certification limit at a 4-ft microphone to fit a ground-based microphone test, one theoretically would have to increase the limit by an amount necessary to maintain equal stringency. Examination of the results in Table 9.4 show that most differences do fall between 3 and 5 dB. These results are consistent with theory and suggest that a degree of cancellation typiclly accompanies the 3 dB difference one would expect for random versus coherent phase relationships.

The variability in test results between operations modes displays no clear pattern. The variation in difference in values can be considered to reflect differences in the "acoustical angle" or the angle of incidence at the time of the maximum noise. These geometrical factors are also joined by differences in spectral content in influencing resulting sound level values.

TABLE 9.4

COMPARISON OF

GROUND AND 4 FT. (1.2 M) MICROPHONE DATA

			TADCET	DELTA dB = (GND MIC.) minus (4 FT. MIC.)				
TEST SERIES	OPERATION	Sample Peration size	IAS (KTS)	SEL	AL	EPNL	PNI TN	
A	500'LF0	6	135	4.4	4.1	5	5.1	
8	500'LFO	4	135	4.2	4	4.8	4.7	
C	500'LF0	4	135	4.1	3.9	4.5	4.7	
D	500'LF0	5	120	4.3	4.2	4.9	4.0	
E	500'LFO	6	105	4.2	4	4.4	4.3	
F	1000'LFO	4	135	3.9	3.5	4.9	4.4	
6	1CA0 T/0	6	85	3.8	3.5	3.7	3 4	
H	ICAO APP	6	85	3.8	4.1	3.7	3.0	
1	MIL.APP	4	70	3.8	4.5	3.7	3.0 A A	
J	TAKEOFF	3	85	4.4	4.5	4 9	A 7	
K	APP	4	100	3.8	4	37	7.0	
L	MIL. 7/9	3	70	4.8	4.9	5.2	4.8	
		WEIGHTE	d average	4.1	4.05	4.4	4.38	

9.4 <u>Analysis of Duration Effects</u> - This section consists of three parts, each developing relationships and insights useful in adjusting from one acoustical metric to another (typically from a maximum level to an energy dose). Each section quantitatively addresses the influence of the event duration.

9.4.1 <u>Relationships Between SEL, AL and T-10</u> - This analysis explores the relationship between the helicopter noise event (intensity) time-history, the maximum intensity, and the total acoustical energy of the event. Our interests in this endeavor include the following:

 It is often necessary to estimate an acoustical metric given only part of the information required.

2) The time history duration is related to the ground speed and altitude of a helicopter. Thus any data adjustments for different altitudes and speeds will affect duration time and consequently the SEL (energy metric). The requirement to adjust data for these effects often arises in environmental impact analyses around heliports. In addition, the need to implement data corrections in helicopter noise certification tests further warrants the study of duration effects.

Two different approaches have been utilized in analyzing the effect of event 10-dB-down duration (DURATION or T_{10}) on the accumulated energy dose (Sound Exposure Level).

Both techniques are empirical, each employing the same input data but using a different theoretical approach to describe duration influences.

The fundamental question one may ask is "If we know the maximum A-weighted sound level and we know the 10-dB-down duration time, can we with confidence estimate the acoustical energy dose, the Sound Exposure Level?" A rephrasing of this question might be: If we know the SEL, the AL, and the 10-dB-down duration time (DURATION), can we construct a universal relationship linking all three?

Both attempts to establish relationships involve taking the difference between the SEL and AL (delta), placing the delta on the left side of the equation and solving as a function of duration. The form which this function takes represents the differences in approach.

In the first case, one assumes that delta equals some constant K(DUR) multiplied by the base 10 logarithm of DURATION, i.e.,

SEL - AL = $K(DUR) \times LOG(DURATION)$

In the second case, we retain the 10 x LOG dependency, consistent with theory, while achieving the equality through the shape factor, Q, which is some value less than unity i.e., SEL-AL = 10 x LOG(Q x DURATION). In a situation where the flyover noise event time history was represented by a step function or square wave shape, we would expect to see a value of Q equaling precisely one. However, we know that the time history for typical non-impulsive events is much closer in shape to an isosceles triangle and consequently likely to have a Q much closer to 0.5.

Another possible use of this analytical approach for the assessment of duration effects is in correcting noise certification test data which were acquired under conditions of nonstandard ground speed and/or distance.

<u>Discussion</u> - Each of the noise template data tables lists both of the duration related figures of merit for each individual event (see Appendix B). One immediate observation is the apparent insensitivity of the metrics to changes in operation, and the extremely small variation in the range of metric values, nearly a constant Q = 0.5 and a stable K(A) value of approximately 7.0. Data have been plotted in Figure 9.11 which show the minor variation of both metrics with airspeed for level flyover operations recorded at microphone site 1 direct read system. The lack of variation in the parameters, suggests that a simple and nearly constant dependency exists between SEL, AL, and log DURATION, relatively unaffected by changes in airspeed, in turn suggesting a consistent time history shape for the range of airspeeds evaluated in this test. As SEL increases with airspeed, the increase appears to be related to increase in AL_M but mitigated in part by reduced duration time (and a nearly constant K(A)=7).

FIGURE 9.11

It is interesting to note that similar results were found for other helicopters (Ref. 10, 11, 12, 13, 14, 15), suggesting that different helicopter models will have similar values for K and Q. This implies that it would not be necessary to develop unique constants for different helicopter models for use in implementing duration corrections. Notwithstanding, caution is raised to avoid drawing any firm conclusions. The possibility exists that this particular analytical technique lacks the sensitivity necessary to detect distance and speed functionality.

Γ,

9.4.2 Estimation of 10 dB Down Duration Time - In some cases, one does not have access to 10 dB down duration time (DURATION) information. A moderate to highly reliable technique for estimating DURATION for the BV 234/CH-47D is developed empirically in this section.

The distance from the helicopter to the observer at the closest point of approach (expressed in feet) divided by the airspeed (expressed in knots) yields a ratio, hereafter referred to as (D/V). This ratio has been compiled for various test series for microphone sites 1, 2 and 3 and has been presented in Table 9.5 along with the average DURATION expressed in seconds. A linear regression was performed on each data set in Table 9.5 and those results are also displayed in Table 9.5. Here one observes generally high correlation coefficients, in the range of 0.67 to 0.94. The regression equations relating DURATION with D/V are given as

Centerline center, Microphone Site 1: $T_{10} = [1.75 \times (D/V)] + 4.0$ Sideline South, Microphone Site 2: $T_{10} = [1.84 \times (D/V)] + 4.0$ Sideline North, Microphone Site 3: $T_{10} = [0.95 \times (D/V)] + 7.7$

Because the regression analyses were conducted for a population consisting of all test series using trim and 220 RPM (which involved the operations

.

HELIC	opter: B	OEING-VEI	RTOL CH-47D	DURATION (T-10) REGRESSION ON D/V				
SITE	1							
	COCKPIT							
TEPT	PHUIU	AL 10	4110		LINEAR			
1631					REGRESSION			
JEKIE	D V HVU	DOK(4)	ESI ALI	U/V				
C	135	10.1	509.7	3.8	SLOPE	1.75		
D	121.25	11.5	487.2	4	INTERCEPT	4.01		
E	103.6	14.7	507.3	4.9	R SQ.	.67		
F	134.25	16.1	930.6	6.9	R	.82		
K	90.5	10.7	456.7	5	SAMPLE	5		
SITE 2	2							
C	135	12.7	708.5	5.2	SLOPE	1.84		
D	121.25	15.2	692.5	5.7	INTERCEPT	4		
E	103.6	17.4	707.3	6.8	R SQ.	.88		
F	134.25	18	1052.7	7.8	R	.94		
K	90.5	17.2	671.3	7.4	SAMPLE	5		
SITE 3)							
C	135	12	710.5	5.3	SLOPE	.96		
D	121.25	13.4	692.5	5.7	INTERCEPT	7.69		
E	103.6	16	707	6.8	R SQ.	.44		
F	134.25	15	1052.3	7.8	R	.67		
K	90.5	13.6	667.7	7.4	SAMPLE	5		

in both directions--test series C, D, E, F and K), it is not possible to comment on left-right side acoustical directivity of the helicopter.

<u>Synthesis of Results</u> - It is now possible to merge the results of Section 9.4.1 with the finding above in establishing a relationship between (D/V) and SEL and AL. Given the approximation

SEL = AL + $(10 \times LOG(0.50 \times DURATION))$

It is possible to insert the computer value for $^{T}10$ (DURATION) into the equation and arrive at the desired relationship.

9.4.3 <u>Relationship Between SEL Minus AL and the Ratio D/V</u> - The difference between SEL and AL_M or conversely, EPNL and PNLT_M (in a certification context) is referred to as the DURATION CORRECTION. This difference is clearly controlled by the event T10 (10 dB down duration time) and the acoustical energy contained within those bounds. As discussed in previous sections, the T10 is highly correlated with the ratio D/V. This analysis establishes a direct link between D/V and the DURATION CORRECTION in a manner similar to that employed in Section 9.4.2. Table 9.6 provides a summary of data used in regression analyses for microphones 1, 2 and 3 along with the slope, intercept, correlation coefficient and other statistical information.

One observes a very strong correlation at one sideline site (R=0.99) and a virtually nonexistent value (R=0.18) at the other site. Meanwhile the centerline site also displays a low correlation coefficient, R-0.56. As mentioned in Section 9.4.2, it is difficult to comment explicitly on source directivity because operations were conducted in both directions. Regardless, one can see that centerline/sideline differences do exist.

The reader is cautioned not to expect these relatinships to necessarily hold for D/V ratios beyond the range explored in these analyses.

HELLCOPTER:	BOEING-VERTOL	CH-47D
NELICOLICUS	DAPTILA AFILIAR	

SEL-ALM REGRESSION ON D/V

SITE 1

Million

ĺ.

- - - mare analytic and

TEST SERIES	Cockpit Photo Data V Avg	avg Sel-Al#	avg Est alt	D/V	LINEAR REGRESSION
C D F K	135 121.25 103.6 134.25 90.5	7.3 7.6 8.4 8.8 6.4	509.7 487.2 507.3 930.6 456.7	3.8 4 4.9 6.9 5	SLOPE .43 INTERCEPT 5.58 R SQ32 R .56 SAMPLE 5
SITE 2	2				
C D F K	135 121.25 103.6 134.25 90.5	7.9 8.7 9.3 9.3 9.2	/08.5 692.5 707.3 1052.7 671.3	5.2 5.7 6.8 7.8 7.4	SLOPE .49 Intercept 5.68 R SQ8 R .89 Sample 5
SITE	3				
C D F K	135 121.25 103.4 134.25 90.5	i 7.7 i 8.2 i 8.1 i 8.1 i 8.1	710.5 692.5 7 707 1052.3 8 667.7	5.2 5.7 6.8 7.8 7.4	SLOPE .07 INTERCEPT 7.66 R SQ03 R .18 SAMPLE 5

9.5 <u>Analysis of Variability in Noise Levels for Two Sites Over Similiar</u> <u>Propagation Paths</u> - This analysis examines the differences in noise levels observed for two sites each located 500 feet away from the hover point over similar terrain. The objective of the analysis was to examine variability in noise levels associated with ground-to-ground propagation over nominally similar propagation paths. The key word in the last sentence was nominally,...in fact the only difference in the propagation paths is that microphone IH was located in a slight depression, (elevation is minus 2.5 feet relative to the hover point), while site 2 has an elevation of plus 0.2 feet relative to the hover point. This is a net difference of 2.7 feet over a distance of 500 feet. This configuration serves to demonstrate the sensitivity of ground-to-ground sound propagation over minor terrain variations.

<u>Discussion</u> - The results presented in Tables 9.7, 9.8, 9.9 and 9.10 show the observed differences in time averaged noise levels for each of four static operations. In each table, data are shown for eight directivity angles and the spacial average. In each case, magnetic recording data (Appendix C) have been used in the analyses. It is observed that only minor differences in noise level occur during all operational scenarios (1 to 1.5 dB) with the exception of ground idle, where differences of 2 to 4 dB are observed.

The most remarkable aspect of these results is the small difference in noise levels for 3 out of 4 static operations. In every other report in this series (six other helicopters), very large differences have been observed (4 to 10 dB). The results for ground idle for the BV 234/CH-47D actually reflect the type of differences previously seen. It is worth

noting here that the reduced rotor RPM associated with ground idle operations allows more engine noise (higher frequency sound) to dominate resulting A-weighted spectra.

First, let us consider why such relatively small differences are observed here. The BV 234/CH-47D rear tandem rotor lies in a plane approximately 18 feet off the ground, thus establishing a higher angle of incidence for projected acoustical energy. Other helicopters in this test program have rotors 7 to 9 feet off the ground. Additional reasons for the good agreement could include the dominant influence of low frequency energy and the lesser sensitivity to meteorological effects.

Reasons for differences in sound levels are somewhat easier to propose. It is speculated that very minor variations in site elevation (and resulting microphone placement) lead to site-to-site differences in the measured noise levels for static operations. Differences in microphone height result in different positions within the interference pattern of incident and reflected sound waves. It is also appropriate to consider whether variation in the acoustical source characteristics with time may contribute to noise level differences. In this analysis, magnetic recording data from microphone site 2 are compared with data recorded at site IH approximately one minute later. That is, the helicopter rotated 45 degrees every sixty seconds, in order to project each directivity angle (there is a 45 degree separation between the two sites). In addition to source variation, it is also possible that the helicopter heading, based on magnetic compass readings may have been slightly different in each case, resulting in the projection of different intensities and accounting for the observed differences. A final item of consideration is the possibility of refraction of sound waves (due to thermal or wind gradients) resulting in shadow regions.

COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES

HELICOPTER: BOEING-VERTOL CH-47D

.

and in such that is stated and a state of the state of the

OPERATION: HOVER-IN-GROUND-EFFECT

		Lav(360	DEGREE)								
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.	₩ ₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
*****	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	
Soft 1H Soft 2	75.2 75.6	81.4 83.5	74.2 72.8	77.8 79	75.7 76 5	76 76.3	68.7 66	74.4 75.9	76.6 77.8	75.4 75.7	
DELTA dB	.4	2.1	1.4	1.2	.8	.3	2.7	1.5	1.2	.3	

TABLE 9.8

COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES

HELICOPTER: BOEING-VERTOL CH-47D

OPERATION: HOVER-OUT-OF-GROUND-EFFECT

DIRECTIVITY ANGLES (DEGREES)									Lav(360 DEGREE)			
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.		
	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEO	LEQ	LEQ		
SOFT 1H Soft 2	79.6 79.6	84.3 86.2	83.8 85.4	84.4 85.5	NA 82.2	81.4 83.9	82.7 82.3	81.4 82.4	82.8 83.9	82.5 83.4		
DELTA dB	0	1.9	1.6	1.1	NA	2.5	.4	1	1.1	.9		

CONPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES

HELICOPTER: BOEING-VERTOL CH-47D

OPERATION: FLIGHT IDLE

DIRECTIVITY ANGLES (DEGREES) Lav(360 DEGREE)											
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.	
	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	
SOFT 1H Soft 2	68.5 69.4	72.3 69.3	70.5 69.6	69.8 70.6	66.7 70.3	68.2 72.3	66 8, Sò	69.9 71.1	69.4 70.3	69 70.2	
delta de	.9	3	.9	.8	3.6	4.1	2.8	1.2	.9	1.2	

TABLE 9.10

COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES

HELICOPTER: BOEING-VERTOL CH-47D

OPERATION: GROUND IDLE

DIRECT: TY ANGLES (DEGREES)									Lau(360 DEGREE)			
SITE	0	45	90	135	180	225	270	315	ENERSY	ARITH.		
	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ		
soft 1H Soft 2	62.8 66.9	63.2 64.5	56.3 58.9	59 61	59.1 62.8	63.2 65.9	61.8 63.2	60.2 64.1	61.2 64	60.7 63.4		
DELTA dB	4.1	1.3	2.6	2	3.7	2.7	1.4	3.9	2.8	2.7		

9.6 <u>Variation in Noise Levels with Airspeed for Approach Cperations</u> -This section examines the change in noise levels with variation in appproach angle, RPM, and trim configuration for the BV 234/CH-47D in the approach mode.

Data shown in Table 9.11 have been corrected for altitude deviations from the reference ICAO approach (test series H) for each microphone site. Each of these three test series represents a unique mixture of RPM, airspeed and trim configuration. While this analysis represents only three points within the 5-dimensional space defined by (1) noise level, (2) trim, (3) rotor KPM, (4) rate of descent and (5) airspeed, the results do provide a starting point for mapping generalized relationships.

One of the physical phenomena governing noise levels in the approach operation is the collision of vortices from the forward rotor with the aft rotor blade as shown in Figure 9.12. As one might expect, changing the relative tilt (or trim) of the respective rotors will influence the degree of vortex-blade interaction.

Significant findings include the apparent (relative) lower levels for test series H as opposed to series I and K. The site 1 differential in SEL between series H and I is more than 5 dB. While further work would be required to establish the optimal "Fly Neighborly" approach operational regime, one can clearly identify series H as a relatively less noisy configuration for some on track noise sites. It is interesting to note that noise levels observed at other centerline sites did not display the sensitivity to operational modes as did the levels observed at site 1.

	BV	234/	/CH-47D	APPROACH	DATA
--	----	------	---------	----------	------

TEST	DES	SCRIPT	LON		SIT	E 5	SIT	E 1	SI	re 4
SERIES	RPM	IAS	TRIM	APP ANG	SEL	DBA	SEL	DBA	SEL	DBA
Н	225	85	234	6`	98.6	91.9	97.9	90 . 9	96.8	89. 0
I	225	70	CH-47D	6`	99.8	93.1	103	96.2	97.7	89.8
К	220	100	234	3`	98.3	92.4	101.5	95.3	95.9	89.2

In the context of the "Fly Neighborly" program, it is worth acknowledging the potential tradeoff (and classic problem) of diminishing noise levels at one location while increasing or not affecting noise levels at another. A recent study conducted in France (ref. 16) included a matrix of 24 microphones. While cost and logistical constraints make this unrealistic for evaluation of each civil transport helicopter, one would be prudent to evaluate several centerline and sideline microphone locations in any in-depth "Fly Neighborly" flight test.

Two final points of concern in developing "Fly Neighborly" procedures are safety and passenger comfort. Rates of descent, airspeed, initial apprach altitude and "engine-out" performance are all factors requiring careful consideration in establishing a noise abatement approach. Finally, while certain operational modes may significantly reduce noise levels, there may be an unacceptable acceleration/deceleration or rate of descent imposed on passengers. This matter is clearly an important concern in commercial air shuttle operations.

84

ومنافضات ومحمد ومحمد ومحمد ومحمد ومنافعة والمعارضة والمتعاقب والمساقح محافر سواكما فلاجتماع ومحمد ومندوع والمحمد والمعارضة والمعارية والمعارية والمعارية والمحمد والمحم

9.7 Analysis of Ground-to-Ground Acoustical Propagation

9.7.1 <u>Soft Propagation Path</u> - This analysis involves the empirical derivation of propagation constants for a nominally level, "soft" path, a ground surface composed of mixed grasses. As discussed in previous analyses, there are several physical phenomena that influence the liminution of sound over distance. Among these phenomena, spreading loss, ground-to-ground attenuation and refraction are considered dominant in controlling the observed propagation constants.

A-weighted L_{eq} data for the four static operational modes- HIGE, HOGE, Flight Idle, and Ground Idle- have been analyzed in each case for eight different directivity angles. Direct read acoustical data from sites 2 and 4H have been used to calculate the propagation constants (K) as follows:

K = (Leq(site 2) - Leq(site 4))/Log (2/1)

「「「「「「「「「」」」」」

-B- Si Secondali

where the Log (2/1) factor represents the doubling of distance dependency (Site 2 is 492 feet and site 4H is 984 feet from the hover point).

For each mode of operation, the average (over various directivity angles) propagation constant has also been computed. The data used in this analysis (derived from Appendix C) are displayed in Table 9.12 and the results are summarized in Table 9.13.

<u>Discussion</u> - The results shown in Table 9.13 exhibit extreme variation from one operational mode to the next. The higher angle operations HIGE and HOGE display propagation constants one would expect for a low-frequency-dominated spherical spreading (air to ground propagation) scenario.

For these operational modes, the general relationship $\Delta dB = 21 \log (d1/d2)$ provides a working approximation for calculating ground-to-ground diminution of A-weighted sound levels over nominally soft paths out to a distance of 1000 feet. In the case of the low angle (wheels on the ground) propagation scenarios where rotor noise is diminished and turbine engine noise is more dominant, one observes very high rates of attenuation undoubtedly associated with absorption of high frequency energy.

9.7.2 <u>Hard Path Propagation</u> - This part of the analyses involves the empirical derivation of constants for sound propagation over a "hard" propagation path, a concrete, composite taxi-way surface. The analytical methods described above (Section 9.7.1) are applicable using data from sites 5H and 7H, respectively 492 and 717 feet from the hover site. The data used in this analyses (derived from Appendix D) are shown in Table 9.14 and the results are summarized in Table 9.15. The salient feature of this scenario is the presence of a ground surface which is highly reflective and uniform in composition.

DATA UTILIZED IN COMPUTING EMPIRICAL PROPAGATION CONSTANTS (K) FOR SOFT SITES 4H & 2

BOEING-VERTOL CH-47D

7-12-83

SITE 4H

HIGE		FLT.IDLE		GRN.IDLE		HOGE	
M-90 M-45 M-0 M-315 M-270 M-225 M-180	75.90 76.50 62.00 69.20 74.50 77.30 68.50	N-90A N-45A N-0A N-315A N-270A N-225A N-180A N-180A	58.80 53.90 56.00 56.30 56.60 56.80 57.20	N-90B N-45B N-0B N-315B N-270B N-2258 N-130B N-135B	51.00 47.70 48.10 52.00 49.40 49.30 49.40 49.50	0-90 0-45 0-0 0-315 0-270 0-225 0-180 0-135	73.20 75.90 76.70 78.00 76.00 79.00 79.00 78.70
M-130	/3.30	W_159H	99100				

SITE 2

HIGE		FLT.IDLE		GND.IDLE		HOGE	
M-90 M-45 M-0 M-315 M-270	76.60 77.50 67.20 77.60 77.70	N-90A N-45A N-0A N-315A N-270A	70.80 72.80 69.90 73.40 71.10	N-90B N-45B N-0B N-315B N-270B N-225B	64.60 65.60 64.60 66.60 64.10	0-90 0-45 0-0 0-315 0-270 0-225	80.20 82.50 82.80 84.20 82.70 86.20
M-225 M-180 M-135	80.80 73.90 84.80	N-225A N-180A N-135A	70.80 70.50 70.20	N-2258 N-1808 N-1358	58.70 66.20	0-180 0-135	86.10 86.40

BOE ING-VERTOL

ENFIRICAL PROPOSATION CONSTANTS (K) FOR SOFT SITES (40+2)

EMISSION ANGLE	HIGE K	FLT.IDLE K	8ND.1DLE K	H BGE K
90	2.33	48.80	45,33	21.30
45	3.33	63. 88	59.67	22.00
0	17.33	46.33	35.06	28.33
315	28.00	57.06	48.67	28.67
270	10.67	46.33	47.00	22.33
225	11.67	46.67	39.67	24.80
189	18.00	44.33	34.00	23.47
135	31.67	47.00	37.96	25.67
AVERAGE	15.37	49.3 3	48.42	22.75

Andreas and a second second

DATA UTILIZED IN COMPUTING EMPIRICAL PROPAGATION CONSTANTS (K) FOR HARD SITES 7H & 5H

BOEING-VERTOL CH-47D

7-12-83

SITE 7H

NICC

HIGE		FLT.IDLE		GFN.ICLE		HOGE	
M-90	72.49	N-90A	72.85	N-90B	62.38	0-90	84.82
M-45	83.64	N-45A	71.07	N-45B	64.18	∩- 4 5	88 43
M-0	75.52	N-0A	69.28	N-OB	59.11	0-0	82.76
n- 315	72.17	N-315A	69.00	N-315B	65.93	0-315	83.86
M-270	71.48	N-270A	70.72	N-270B	66.02	0-270	82.25
M-225	75.76	N-225A	72.02	N-225B	65.87	0-225	80.92
M-180	72.68	N-180A	66.68	N-180B	61.21	0-180	83.95
M-135	75.69	N-135A	74.60	N-135B	62.27	0-135	85.80

SITE SH

معادما ومحافظة المعادية فكمالهم والمراولة للمعادمة والمعاد

nator to be a service of the service of the

HIGE		FLT.IDLE		GND.IDLE		HOGE	
N-90	NA	N-90A	76.30	N-90B	68.10	0-90	89.10
M-45	85.10	N-45A	75.50	N-458	69.60	0-45	91.00
N-0	78.00	N-DA	78.60	N-08	65.60	0-0	84.80
N-315	77.70	N-315A	74.30	N-3158	69.70	0-315	87.40
N-270	75.10	N-270A	75.00	N-270B	70.90	0-278	86 38
M-225	79.80	N-225A	77.10	N-225B	74.10	0-225	85.90
N-18º	76.40	N-180A	72.00	N-180B	67.20	0-180	88.80
M-135	80.20	N-135A	78.30	N-1358	69.90	0-135	90.60

and the second second

ā

- Commentation - In Stars - A

BOEING-VERTOL

ENPIRICAL PROPOGATION CONSTANTS (K) FOR HARD SITES (7H & 5H)

ENISSION ANGLE	HIGE K	FLT.IDLE K	GND.IDLE K	HO GE K
90	************	21,56	35.75	14.25
45	9.13	27.69	33.88	16.06
0	15.50	58.25	40.56	12.75
315	34.56	33.13	23.56	22.13
270	22.63	26.75	30.50	25.31
225	25.25	31.75	51.44	31.13
180	23.25	33.25	37.44	30.31
135	28.19	23.13	47.69	30.00
****		+		****
average	22.64	31.94	37.60	22.74

9.8 <u>Air-to-Ground Acoustical Propagation Analysis</u> - The approach and takeoff operations provided the opportunity to assess empirically the influences of spherical spreading and atmospheric absorption. Through utilization of both noise and position data at each of the three flight track centerline locations (microphones 5, 1, and 4), it was possible to determine air-to-ground propagation constants.

One would expect the propagation constants to reflect the aggregate influences of spherical spreading and atmospheric absorption. It is assumed that the acoustical source characteristics remain constant as the helicopter passes over the measurement array. In past studies (Ref. 10 -15), it has been observed that this assumption is reasonably valid for takeoff and level flyover operations. In the case of approach, however, significant variation has been evident. Because of the spacial/temporal variability in approach sound radiation along the (1000 feet) segment of interest, approach data have not been utilized in estimating propagation constants. As a final background note relating to the assumption of source stability, a helicopter would require approximately 10 seconds, travelling at 60 knots, to travel the distance between measurement sites 4 and 5.

In both the case of the single event intensity metric, AL, and the single event energy metric, SEL, the difference between SEL and AL is determined for each pair of centerline sites. The delta in each case is then equated with the base ten logarithm of the respective altitude ratio multiplied by the propagation constant (either KA(AL) or KA(SEL)), the values to be determined.

Data have also been analyzed from the 500 and 1000 foot level flyover operations and the KP(AL) has been computed. In this case, data were pooled for all centerline sites (5, 1, and 4) in the process of arriving at the propagation constant.

The takeoff analyses are shown in Table 9.16, 9.17 and 9.18 and are summarized in Table 9.19. Results of the level flyover calculations are presented in Table 9.21. The level flyover and takeoff analyses are also accompanied by a tabulation of results from five previous reports (Tables 9.20 and 9.22).

<u>Discussion</u> - In the case of takeoff data (Table 9.19) one observes a propagation constant of about 22.3, a value in good agreement with previous results shown in Table 9.20. This value suggests that either little absorption takes place over the propagation path or that the source frequency content is dominated by low frequency components, (relatively unaffected by absorption).

In the case of level flyover data (Table 9.21), one observes a value of less than 20. This propagation constant is similar to values observed for the Aerospatiale TwinStar and AStar, but significantly less than values seen for the Bell 222 and the Sikorsky S-76A.

Table 9.23 provides a brief examination of propagation constants for the EPNL acoustical metric, used in noise certification. Calculations show a constant of approximately 19. This propagation constant is very close to the mean value observed for helicopters analyzed in other reports (refs. 10 - 15) and summarized in Table 9.24. It is interesting to note that the theoretical value for the EPNL propagation constant is 10. The reader may consider computing propagation constants for other acoustical metrics as the need arises.

93

in die 1. Jaar 1. Se tweede en aan de Antoin gedeelste een die ender die ender die eerste ender die die beste e

TABL	E 9.16		TABL	E 9.17	,	TABLE	9.18	
HELICOPTER	: BOEING-	VERTOL CH-470	HELICOPTER:	BOEING-	VERTOL CH-47D	HELICOPTER:	BOEING-	vertol CH-47D
TEST DATE:	7-13-83)	TEST DATE:	7-13-83		TEST DATE:	7-13-83	}
OPERATION:	icao ta Target	Keoff 1AS=85 KTS	OPERATION:	takeoff Target	1AS=85 KTS	OPERATION:	NILITAR TARGE	n takeoff 1 as=70 kts
	MIC.	. 5-4		NIC.	5-4		NIC.	5-4
eveni no.	KP(AL)	KP(SEL)	EVENT NO.	KP(AL)	KP(SEL)	event no.	KP(AL)	KP(SEL)
630 631	17.5 20.6	15.3 15.7	J47 J49	22 17.3	-5.8 10.6	L53	29 23.1	15.8 13.4
632 623	19.9 20.6	14 13.5	J51	20.6	10.3	L55	27.6	15.6
634 63	22.4 19.9	16.9 16.1	AVERAGE	20	5	average	26.6	14.9
AVERAGE	20.2	15.3	STD. DEV	2.43	9.44	STD. DEV	3.10	1.35
STD. DEV	1.59	1.29	90% C.I.	4.09	12'11	90% C.I.	5.23	2.28
90% C.I.	1.31	1.06						

TABLE 9.20

Summary of Propagation Constants for Three Takeoff Operations Summary for Takeoff Operation--AL Metric

Operation	Propagation Constant (K)
ICAO Takeoff	20.2
Takeoff	20
Military Takeoff	26.6
Averag	ge 22.27

	H	Propagation
Helicopter	<u>-</u>	Constant (K)
Bell 222		NA
Dauphin		20.67
Hughes		21.15
TwinStar		24.4
AStar		21.9
S-76		15.5
CH-47D		22.27
		
	Average	20.98

ε.,

an and and a second s

BOEING-VERTOL CH-47D

LEVEL FLYO'ER PROPAGATION--AL

OPERATION	I	4IC 5	MIC 1	NIC 4	al Weighted Average
	N=	4	4	4	
500' (0.9Vh)	avg al=	79.7	80.8	80	80.17
	STD DEV⊨	1	.8	.6	
	N=	4	4	4	
000' (0.9Vh)	avg al=	74.6	74.4	73.8	74.27
	std dev=	1.1	.7	.6	

K= △d8 / L06(934.37 / 531.63) △d9= 5.90

K= 5.90 /.2449094

K= 24.09

TABLE 9.22

SUMMARY FOR LEVEL FLYOVER OPERATION

AL NETRIC

HELICOPTER	PROPAGATION CONSTANT (K)
BELL 222	21.08
AEROSPATIALE DAUPHIN 2	21 ,40
HUGHES 500D	20.81
AEROSPATIALE TWINSTAR	20.19
Aerospatiale Astar	18.77
SIKORSKY S-76A	25.36
BOEING-VERTOL CH-47D	24.99

AVERAGE = 21.67

BOEING-VERTOL CH-47D

LEVEL FLYOVER PROPAGATION--EPNL

operation	MIC 5		MIC 1	NIC 4	epnl Weighted Average
	N=	4	4	4	
500′ (0.9Vh)	avg epnl=	92.1	92.8	91.9	92.27
	STD DEV⊨	.5	.7	1	
	N=	4	4	4	
000' (0.9Vh)	avg epnl=	86.9	87.1	86.7	86.90
	std dev⊨	.7	.6	.6	

K= 🛆 dB / L06(934.37 / 531.63)

∆d8≠ 5.37

K= 5.37 / .2449094

k- 21.91

AND IN THE REPORT OF A DATE OF

مخاذلة لانحو المتحاد لالمثر عد

TABLE 9.24

SUMMARY TABLE FOR EPNL

HELICOPTER	PROPAGATION CONSTANT (K)
BELL 222	14.33
AEROSPATIALE DAUPHIN 2	18.67
HUGHES 500D	14.80
AEROSPATIALE TWINSTAR	13.84
AEROSPATIALE Astar	13.14
sikorsky s-76a	17.91
BOEING-VERTOL CH-47D	21.91

AVERAGE = 16.37
REFERENCES

- "Determination of Minimum Distance from Ground Observer to Aircraft For Acoustic Tests," Aerospace Information Report 902, Society of Automotive Engineers, May 15, 1966.
- "Flight Path Tracking: Kinotheodolite vs. Camera A comparison of Results. "ICAO Committee on Aviaiton Environmental Protection, Working Group II meeting, Boston, MA, May 1984.
- Richner, Hans and Peter Phillips, "Reproducibility of VIZ Radiosonde Data and Some Sources of Air," <u>Journal of Applied Meteorology</u>, 26, November 1980, May 1981.
- 4. "Measuring Micro-Wind Structure in the Vicinity of the Microphone Array During Noise Certification Testing," ICAO Committee on Aviation Enviroinmental Protection, Working Group II Meeting, Boston, MA, May 1984.
- 5. "Noise Standards: Aircraft Type and Airworthiness Certification," Federal Aviation Regulations Part 36, Department of Transportation, Washington, D.C., June 1974.
- 6. FAR 36, Appendix B, Section B36.2.3.3.

- "International Standards and Recommended Practices Aircraft Noise," Annex 16, International Civil Aviation Organization, May 1981, Appendix 4, paragraph 4.3.
- 8. Westland Helicopters Limited, via P. R. Kearsey, personal communication, January 1984.
- 9. Impact of Noise on People Federal Aviation Administration, Office of Environmental Quality, Washington, DC, May 1977.
- Newman, J. Steven, Edward J. Rickley, Tyrone L. Bland, Sharon A. Daboin. <u>Noise Measurement Flight Test: Data/Analyses Bell 222 Twin</u> <u>Jet Helicopter - FAA-EE-84-01</u>, Federal Aviation Administration, Washington, DC, February 1984.
- 11. Newman, J. Steven, Edward J. Rickley, Sharon A. Daboin, Kristy R. Beattie. Noise Measurement Flight Test: Data/Analyses Aerospatiale SA 365N Dauphin Helicopter - FAA-EE-84-02, Federal Aviation Administration, Washington, DC, April 1984.
- 12. Newman, J. Steven, Edward J. Rickley, Kristy R. Beattie, Tyrone L. Bland. <u>Noise Measurment Flight Test: Data/Analyses Hughes 500D/E</u> <u>Helicopter</u> - FAA-EE-84-03, Federal Aviation Administration, Washington, DC, June 1984.

- 13. Newman, J. Steven, Edward J. Rickley, Kristy R. Beattie, Tyrone L. Beattie. Noise Measurement Flight Test: Data/Analyses Aerospatiale AS 355F TwinStar Helicopter - FAA-EE-84-04, Federal Aviation Administration, Washington, DC, September 1984.
- 14. Newman, J. Steven, Edward J. Rickley, Tyrone L. Bland, Kristy R. Beattie. Noise Measurement Flight Test: Data/Analyses Aerospatiale AS 350D AStar Helicopter - FAA-EE-84-05, Federal Aviation Administration, Washington, DC, Septemeber 1984.
- 15. Newman, J. Steven, Edward J. Rickley, Tyrone L. Bland, Kristy R. Beattie. Noise Measurement Flight Test: Data/Analyses Sikorsky S-76A <u>Helicopter</u> - FAA-EE-84-06, Federal Aviation Administration, Washington, DC, September 1984.
- 16. "Procedures de Vol A Empreintes Acoustiques Reduites Pour Le SA 365N Dauphin," ICAO Committee on Aviation Environmental Protection, Working Group II Meeting, Boston, MA, May 1984.

APPENDIX A

Magnetic Recording Acoustical Data and Duration Factors for Flight Operations

This appendix contains magnetic recording acoustical data acquired during flight operations. A detailed discussion is provided in Section 6.1 which describes the data reduction and processing procedures. Helpful cross references include measurement location layout, Figure 3.3; measurement equipment schematic, Figure 5.4; and measurement deployment plan, Figure 5.7. Tables A.a and A.b which follow below provide the reader with a guide to the structure of the appendix and the definition of terms used herein.

TABLE A.a

The key to the table numbering system is as follows:

Table No.	Α.	1-1.	1
Appendix No			
Helicopter No. & M	licrophone Location		
Page No. of Group			

Microphone No. 1 centerline-center 1G centerline-center(flush) 2 sideline 492 feet (150m) south 3 sideline 492 feet (150m) north 4 centerline 492 feet (150m) west 5 centerline 617 feet (188m) east

TABLE A.b

Definitions

A brief synopsis of Appendix A data column headings is presented.

EV Event Number

SEL Sound Exposure Level, the total sound energy measured within the period determined by the 10 dB down duration of the A-weighted time history. Reference duration, 1-second.

ALm A-weighted Sound Level(maximum)

SEL-ALm Duration Correction Factor

K(A) A-weighted duration constant where:

K(A) = (SEL-ALm) / (Log DUR(A))

Q Time History Shape Factor, where:

Q = (100.1(SEL-ALm) / (DUR(A)))

- EPNL Effective Perceived Noise Level
- PNLm Perceived Noise Level(maximum)

PNLTm Tone Corrected Perceived Noise Level(maximum)

K(P) Constant used to obtain the Duration Correction for EPNL, where:

K(P) = (EPNL-PNLTm + 10) / (Log DUR(P))

- OASPLm Overall Sound Pressure Level(maximum)
- DUR(A) The 10 dB down Duration Time for the A-weighted time history
- DUR(P) The 10 dB down Duration Time for the PNLT time history
- TC Tone Correction calculated at PNLTm

Each set of data is headed by the site number, microphone location and test date. The target reference condtions are specified above each data subset.

TABLE NO. A.7-1.1

· · - -

· ···

لوان المحتمد فستعد للمحتلة الدوماني فعنان مكرد فالمعدال وعلد عديجها للواحد معروم فاستعارهم وحدائري وملاور ويسرم ويتريدون

-

*

BOEING VERTO', CH-470 HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

.

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 1		CEN	TERLINE	- CENTE	R		JULY 12,	,1983		
EV	SEL	ALB	SEL-AL	K(A)	0	EPNL	PNL	PNLT	K(P)	DASPL	DUR(A)	DUR(P)	TC
TAKEOF	F T/	ARGET I	AS 85 KTS	5									
J47 J49 J51	85.8 86.2 87.3	77.2 78.5 79.0	8.6 7.8 8.3	7.1 6.7 7.1	0.4 0.4 0.5	90.0 90.3 91.5	89.6 90.9 92.2	90.5 91.9 92.7	7.4 7.1 7.4	92.8 92.2 95.7	16.5 14.5 14.5	19.5 15.5 15.5	0.9 0.9 1.0
Avg. Stå Dv 90% Cl	86.5 0.7 1.3	78.2 0.9 1.6	8.2 0.4 0.7	7.0 0.2 0.4	0.4 0.0 0.0	90.6 0.8 1.3	90.9 1.3 2.2	91.7 1.1 1.8	7.3 0.2 0.3	93.6 1.9 3.2	15.2 1.2 1.9	16.8 2.3 3.9	0.9 0.0 0.0
Takeof	F TI	ARGET I	AS 70 KTS	6 (MILI	TARY)								
L53 L54 L55	89.8 90.2 90.2	83.1 83.0 83.2	6.7 7.3 7.1	6.7 7.0 6.7	0.5 0.5 0.4	95.4 95.1	96.5 96.7 96.3	97.4 97.7 96.8	- 7.3 7.5	97.9 99.4 98.3	10.0 11.0 11.5	11.5 13.0	0.9 1.0 0.4
Avg. Std Dv 902 Cl	90.1 0.2 0.4	83.1 0.1 0.2	7.0 0.3 0.5	6.8 0.2 0.3	0.5 0.0 0.0	95.3 0.2 0.8	96.5 0.2 0.3	97.3 0.5 0.8	7.4 0.2 0.7	98.6 0.8 1.3	10.8 0.8 1.3	12.2 1.1 4.7	0.8 0.3 0.5
approa	сн Т	Target	IAS 100 H	(TS									
K46 K48 K50 K52	97.8 96.6 96.6 96.9	90.7 89.9 90.5 91.0	7.1 6.6 6.1 5.9	6.6 6.0 6.1 6.5	0.4 0.4 0.5	102.1 100.6 100.7 100.9	104.4 103.6 103.9 104.7	105.0 104.1 104.8 105.4	6.6 6.9 6.0 6.1	102.4 101.5 100.4 101.8	12.0 13.0 10.0 8.0	12.0 9.0 9.5 8.0	0.7 0.5 0.8 0.7
Avg. Std Dv 902 Cl	97.0 0.6 0.7	90.6 0.5 0.5	6.4 0.5 0.6	6.3 0.3 0.4	0.4 0.1 0.1	101.1 0.7 0.8	104.1 0.5 0.6	104.8 0.6 0.7	6.4 0.4 0.5	101.5 0.8 1.0	10.7 2.2 2.6	9.6 1.7 2.0	0.7 0.2 0.2
APPRO	ACH	TARGET	IAS 70 K	TS (MIL	.ITARY)								
136 137 138 139	99.3 97.6 99.4 98.6	92.4 89.6 91.8 90.3	6.9 8.0 7.7 8.3	6.7 7.0 7.1 7.7	0.4 0.5 0.5 0.6	103.2 101.6 103.7 102.6	104.5 102.9 105.3 103.9	105.0 103.7 106.2 104.5	7.3 6.8 7.2 7.4	103.2 101.6 102.9 101.9	11.0 14.0 12.0 12.0	13.0 14.5 11.0 12.5	0.5 0.7 1.0 0.7
Avg. Std D 902 C	98.7 v 0.8 i 1.0	91.0 1.3 1.5	7.7 0.6 0.7	7.1 0.4 0.5	0.5 0.1 0.1	102.8 0.9 1.1	104.1 1.0 1.2	104.9 1.1 1.3	7.2 0.3 0.3	102.4 0.8 0.9	12.2 1.3 1.5	12.7 1.4 1.7	0.7 0.2 0.2

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-1.2 ROEING VERTOL CH-47D HELICOPTER (CHINOOK) SUMNARY NOISE LEVEL DATA

DOT/TSC 6/13/84

·- · ··

۲.

AS MEASURED *

		SI	ITE: 1		CEN	TERLINE	- CENTE	Ŕ		JULY 12	,1983		
EV	SEL	ALB	SEL-AL	K(A)	8	EPNL	PNL	PNLT	K(P)	DASPL	DUR(A)	DUR(P)	TC
500 FT	. FLYON	VER	TARGET 1	AS 135	KTS								
C11 C12 C13 C14	87.3 88.9 88.5 88.0	80.3 82.0 80.3 80.9	7.0 6.9 8.3 7.1	7.4 6.9 8.1 6.9	0.6 0.5 0.6 0.5	91.9 93.5 93.3 92.7	94.8 96.4 94.9 95.2	94.9 97.0 95.1 95.9	7.3 6.6 8.1 6.6	97.6 98.7 97.3 96.7	9.0 10.0 10.5 11.0	9.0 9.5 10.0 11.0	0.3 0.7 0.4 0.6
Avg. Std Dy 902 Cl	88.2 0.7 0.8	80.8 0.8 0.9	7.3 0.6 0.7	7.3 0.6 0.7	0.5 0.1 0.1	92.8 0.7 0.8	95.3 0.7 0.8	95.8 0.9 1.1	7.1 0.7 0.9	97.6 0.8 1.0	10.1 0.9 1.0	9.9 0.9 1.0	0.5 0.2 0.2
500 FT	I. FLYO	VER	TARGET I	AS 135	KTS (IC	AQ)							
A1 A2 A3 A4 A5 A6	86.8 87.0 87.3 87.8 86.5 87.0	80.0 79.6 78.6 79.8 78.5 78.4	6.8 7.4 8.7 8.0 8.0 8.5	6.9 6.8 7.6 6.8 7.0 7.0	0.5 0.5 0.4 0.5 0.4	91.6 92.1 93.0 91.9 91.8	94.9 94.7 93.5 94.9 93.6 93.6	95.6 95.0 93.9 95.2 94.0 94.1	6.3 6.1 7.0 6.6 6.9 6.5	95.4 95.2 95.6 95.8 95.2 95.2	9.5 12.0 14.0 15.0 14.0 16.5	9.0 14.5 17.5 15.0 14.0 15.5	0.6 0.4 0.3 0.4 0.5
Avg. Std Dv 902 Cl	87.1 0.4 0.4	79.2 0.7 0.6	7.9 0.7 0.6	7.0 0.3 0.2	0.5 0.0 0.0	92.2 0.5 0.4	94.2 0.7 0.6	94.6 0.7 0.6	6.6 0.3 0.3	95.4 0.3 0.3	13.5 2.4 2.0	14.2 2.8 2.3	0.4 0.1 0.1
500 F1	I. FLYO	ver	TARGET I	AS 135	KTS (NI	LITARY)							
87 88 89 810	88.9 89.5 89.5 89.8	81.0 82.1 84.1 81.1	7.9 7.5 5.4 7.7	6.8 6.9 6.0 6.4	0.4 0.5 0.4 0.4	94.2 95.4 95.2 94.3	96.9 97.9 99.7 96.6	97.2 98.3 100.1 96.9	6.2 6.6 5.9 6.7	95.8 97.1 98.3 97.5	14.5 12.0 8.0 16.0	13.5 12.0 7.5 13.0	0.4 0.4 0.4 0.2
Avg. Std D 90% Cl	89.2 0.4 0.5	82.0 1.4 1.7	7.1 1.2 1.4	6.5 0.4 0.5	0.4 0.0 0.0	94.8 0.6 0.7	97.8 1.4 1.6	98.1 1.4 1.7	6.3 0.4 0.4	97.2 1.0 1.2	12.6 3.5 4.1	11.5 2.7 3.2	0.3 0.1 0.1
500 F	T. FLYO	ver	TARGET	AS 120	KTS								
D15 D16 D17 D18 D19	86.3 87.2 86.0 87.0 86.3	79.6 79.0 78.2 79.4 78.8	6.7 8.2 7.8 7.5 7.5	6.7 7.4 7.2 7.1 7.3	0.5 0.5 0.5 0.5	90.9 91.8 90.6 91.5 90.4	93.2 92.6 92.1 93.3 93.0	93.6 94.1 92.4 93.7 93.3	6.9 6.9 7.5 7.3 7.1	96.0 95.0 95.3 95.4 94.0	10.0 13.0 12.5 11.5 10.5	11.5 13.0 12.5 12.0 10.0	0.4 1.5 0.2 0.4 0.3
Avg. Std Dy 90% C	86.6 0.5 1 0.5	79.0 0.6 0.5	7.6 0.6 0.5	7.1 0.3 0.3	0.5 0.0 0.0	91.0 0.6 0.6	92.8 0.5 0.5	93.4 0.7 0.6	7.1 0.3 0.2	95.1 0.7 0.7	11.5 1.3 1.2	11.8 1.2 1.1	0.6 0.5 0.5

* - MOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRAFK

TABLE NO. A.7-1.3

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

SUNNARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 1		CEN	TERLINE	- Cente	R		JULY 12	,1983		
EV	SEL	ALm	SEL-AL	K(A)	8	EPNL	PNL	PNLT	K(P)	OASPL.	DUR(A)	DUR(P)	TC
500 FT	. FLYO	VER	TARGET IA	S 105	KTS								
E20 E21 E22 E23 E24 E25	89.2 85.8 86.6 85.7 86.3 85.6	81.3 77.8 77.5 77.5 77.4 77.5	7.8 8.0 9.1 8.2 8.9 8.1	7.2 7.6 7.2 7.1 7.1 7.3	0.5 0.4 0.5 0.4 0.5	93.6 90.2 90.8 90.1 90.9 90.0	95.0 92.1 91.1 91.4 91.1 91.5	95.5 92.6 91.7 91.9 92.3 92.1	7.4 7.3 7.1 7.0 7.2	95.5 92.8 91.7 91.8 91.1 93.8	12.5 11.5 18.5 14.5 18.0 13.0	12.5 11.5 17.5 14.5 16.5 12.5	0.5 0.5 0.6 0.4 1.2 0.6
Avg. Std Dv 902 CI	86.5 1.4 1.1	78.2 1.6 1.3	8.4 0.5 0.4	7.2 0.2 0.2	0.5 0.0 0.0	90.9 1.3 1.1	92.0 1.5 1.2	92.7 1.4 1.2	7.2 0.1 0.1	92.8 1.6 1.3	14.7 2.9 2.4	14.2 2.4 2.0	0.6 0.3 0.2
1000 F	T. FLY	over	- TARGET I	AS 135	KTS								
F26 F27 F28 F29	83.9 83.4 82.8 83.0	73.9 75.4 73.9 74.5	10.0 8.0 8.8 8.5	8.0 6.9 7.4 6.9	0.6 0.4 0.5 0.4	87.6 87.4 86.5 86.7	87.8 89.3 88.1 88.2	88.4 89.7 88.6 88.6	7.8 6.8 6.7 6.6	89.5 89.9 88.3 88.6	17.5 14.5 15.5 17.0	15.0 13.5 15.0 16.5	0.7 0.4 0.6 0.4
Avg. Std Dv 90% CI	83.3 0.5 0.6	74.4 0.7 0.8	8.8 0.9 1.0	7.3 0.5 0.6	0.5 0.1 0.1	87.1 0.6 0.7	88.3 0.7 0.8	88.8 0.6 0.7	7.0 0.6 0.7	89.1 0.8 0.9	16.1 1.4 1.6	15.0 1.2 1.4	0.5 0.1 0.1
TAKEOF	F T	ARGET 1	IAS 85 KT	G (ICAO))								
640 641 642 643 644 645	90.1 90.0 90.5 90.0 91.3 91.4	83.6 83.6 83.9 83.0 85.8 85.8	6.4 6.6 7.0 5.4 5.6	6.3 6.3 6.7 6.8 6.2 6.4	0.4 0.5 0.5 0.5 0.5	94.6 95.1 95.9 96.2	96.8 96.5 97.2 96.4 99.3 99.3	97.2 97.1 97.7 96.9 100.0 99.7	6.7 7.0 6.4 6.9	98.6 97.9 99.0 98.6 100.3 100.5	10.5 10.5 9.5 11.0 7.5 7.5	13.0 11.5 8.5 9.0	0.4 0.6 0.5 0.5 0.6 0.4
Avg. Std Dv 902 CI	90.5 0.7 0.5	84.3 1.2 1.0	6.2 0.6 0.5	6.4 0.2 0.2	0.5 0.0 0.0	95.5 0.8 0.9	97.6 1.4 1.1	98.1 1.4 1.1	6.7 0.2 0.3	99.2 1.0 0.8	9.4 1.6 1.3	10.5 2.1 2.5	0.5 0.1 0.1
APPROA	юн	TARGET	IAS 85 K	IS (ICA	0)								
H30 H31 H32 H33 H34 H35	97.6 97.3 98.1 98.7 98.4 97.3	90.8 90.0 91.1 91.2 91.3 91.0	6.8 7.3 7.0 7.5 7.2 6.4	6.6 6.5 6.8 7.0 7.2 5.7	0.4 0.5 0.5 0.5 0.3	101.9 101.3 102.4 103.0 102.8 101.2	104.1 103.8 104.9 105.0 104.7 104.5	104.9 104.4 105.5 105.5 105.5 105.0	6.7 6.5 6.7 7.2 7.3 6.5	102.1 102.5 102.9 103.2 102.9 102.5	11.0 13.5 10.5 12.0 10.0 13.0	11.0 11.5 10.5 11.0 10.0 9.0	0.9 0.6 0.5 0.7 0.6
Avg. Std Dv 902 CI	97.9 0.6 0.5	90.9 0.5 0.4	7.0 0.4 0.3	6.6 0.5 0.4	0.4 0.1 0.1	102.1 0.8 0.6	104.5 0.5 0.4	105.1 0.4 0.4	6.8 0.4 0.3	102.7 0.4 0.3	11.7 1.4 1.2	10.5 0.9 0.7	0.6 0.2 0.1

فلكتم للمؤدمة والمعارية فيقوم والفاقية فالمراجع فيرافيهم والمقامين والمعادية والمعادية والمعادية والمعاد

ومنافقة والموجوعة والمحافة والمحافة والمعافة والمنافعة ومستحد ومستماده ومستعلمهم والمنافع والمحافة والمحافية والمح

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

DOT/TSC 6/13/84

TABLE NO. A.7-16.1

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

SUNNARY NOISE LEVEL DATA

AS NEASURED *

	SITE: 10					INE-CEN	TER (FL	USH)	JUL	Y 12,198	5		
EV	SEL	AL	SEL-AL	K(A)	Q	EPNL	PNL	PNLTB	K(P)	DASPL I)UR(A) [)UR(P)	TC
TAKEOF	F TA	RGET I	AS 85 KT	3									
J47 J49 J51	90.7 90.4 91.6	81.9 82.4 83.9	8.8 8.0 7.8	6.9 6.7 7.0	0.4 0.4 0.5	95.4 94.9 96.2	94.9 94.3 97.4	95.7 95.2 98.2	7.4 7.9 7.0	99.2 98.2 101.8	18.5 16.0 13.0	20.5 17.0 14.0	0.8 0.9 0.9
Avo. Std D 901 C	90.9 v 0.6 I 1.1	82.7 1.0 1.7	8.2 0.5 0.9	6.8 0.2 0.3	0.4 0.0 0.1	95.5 0.7 1.1	95.5 1.6 2.7	96.4 1.6 2.7	7.5 0.4 0.7	99.7 1.8 3.1	15.8 2.8 4.6	17.2 3.3 5.5	0.9 0.1 0.1
TAKEO	FF TA	ARGET 1	IAS 70 KT	S (MILI	TARY)								
L53 L54 L55	94.2 95.1 95.5	87.6 88.1 88.4	6.6 6.9 7.1	6.7 6.7 6.7	0.5 0.4 0.4	100.4 100.5	100.4 101.4 101.0	101.1 103.0 102.2	7.3 7.5	103.0 105.0 104.0	9.5 11.0 11.5	10.5 12.5	0.7 1.6 1.6
Avg. Std D 902 (94.9 v 0.7 1 1.1	88.0 0.4 0.7	6.9 0.3 0.5	6.7 0.0 0.0	0.5 0.0 0.0	100.5 0.1 0.3	100.9 0.5 0.9	102.1 1.0 1.6	7.4 0.2 0.9	104.0 1.0 1.7	10.7 1.0 1.8	11.5 1.4 6.3	1.3 0.5 0.9
appri	ACH	TARGET	IAS 100	KTS									
K46 K48 K50 K52	101.6 99.6 100.5 101.4	94.8 93.4 94.5 95.6	6.8 6.2 6.0 5.8	6.6 6.5 6.2 6.4	0.4 0.5 0.4 0.5	105.5 103.7 104.4 105.5	107.9 106.9 108.0 109.0	108.6 107.5 108.9 110.0	6.4 5.8 6.1	106.5 105.4 105.2 107.0	11.0 9.0 9.0 8.0	12.0 9.5 9.0 8.0	0.7 0.6 0.9 1.1
Avg. Std 902	100.8 Dv 0.9 CI 1.1	94.6 0.9 1.1	6.2 0.5 0.5	6.4 0.1 0.2	0.5 0.0 0.0	104.8 0.9 1.1	107.9 0.9 1.0	108.7 1.1 1.2	6.2 0.3 0.3	106.0 0.8 1.0	9.2 1.3 1.5	9.6 1.7 2.0	0.8 0.2 0.2
APPR	OACH	TARGE	T 1AS 70	KTS (MI	LITARY)								
136 137 138	102.1 101.9 103.3 102.7	95. 93. 96.	8 6.3 8 8 2 7 ε.5 8 6.9	6.2 7.0 6.2 6.6	0.4 0.5 0.4 0.4	106.2 105.9 107.2 106.7	108.9 106.9 109.7 109.8	109.9 107.7 110.4 109.4	6.1 6.9 6.3 6.9	107.4 106.0 107.9 106.5	10.5 14.5 11.5 11.0	11.0 15.5 12.0 11.5	1.0 0.8 0.6 0.6
Avg. Std 90%	102.5 Dv 0.6 CI 0.7	95. 1.	5 7.0 3 0.8 5 1.0	6.5 0.4 0.5	0.4 0.0 0.0	106.5 0.6 0.7	108.6	109.3	6.5 0.4 0.5	106.9 0.8 1.0	11.9 1.8 2.1	12.5 2.0 2.4	0.7 0.2 0.2

 * - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-16.2

BOEING VERTOL CH-47D HELICOPTER (CHINDOK)

00T/TSC 6/13/84

SUNMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 16		CENT	ERLINE-C	ENTER (flush)	٦	ULY 12,19	'83		
EV	SEL	ALB	SEL-AL	K(A)	0	EPML	PNL	PHLT	K(P)	DASPL	DUR(A)	DUR(P)	TC
500 F	T. FLYO	ver	TARGET I	AS 135	KTS								
C11 C12 C13 C14	91.3 93.5 92.5 92.0	84.0 85.9 84.2 84.9	7.3 7.5 8.3 7.2	7.3 7.4 7.8 6.8	0.5 0.5 0.6 0.5	96.3 98.1 97.6 97.2	99.4 101.3 99.9 100.0	99.7 101.5 100.4 100.2	6.7 6.8 7.2 6.9	101.1 103.3 101.0 101.9	10.0 10.5 11.5 11.5	9.5 9.5 10.0 10.5	0.3 0.2 0.6 0.3
Avg. Sta D 901 C	92.3 v 0.9 i 1.1	84.7 0.9 1.0	7.6 0.5 0.6	7.3 0.4 0.5	0.5 0.1 0.1	97.3 0.8 0.9	100.1 0.8 1.0	100.5 0.7 0.9	6.9 0.2 0.2	101.8 1.0 1.2	10.9 0.7 0.9	9.9 0.5 0.6	0.3 0.2 0.2
500 F	T. FLYO	ver '	TARGET 14	NS 135	KTS (10	(DA)							
A1 A2 A3 A5 A6	90.7 91.6 91.8 92.7 90.8 9.3	83.9 83.2 83.1 84.3 82.8 82.7	6.8 8.4 8.7 8.3 8.0 8.6	6.7 7.6 7.4 7.2 7.1 7.4	0.5 0.5 0.5 0.5 0.5	96.4 97.3 97.4 98.6 96.6 96.9	98.9 98.9 99.4 101.0 98.7 99.2	99.2 99.5 99.8 101.3 99.0 99.5	6.0 7.2 6.7 6.5 6.6 6.8	100.1 100.0 100.2 102.1 99.5 101.1	10.5 13.0 15.0 14.5 13.5 14.5	15.5 12.0 13.5 13.0 14.0 12.5	0.3 0.6 0.4 0.3 0.4 0.3
Avg. Std Dv 902 CI	91.5 0.7 0.6	83.3 0.7 0.5	8.2 0.7 0.6	7.2 0.3 0.3	0.5 0.0 0.0	97.2 0.8 0.6	99.4 0.8 0.7	99.7 0.8 0.7	6.7 0.4 0.3	100.5 0.9 0.8	13.5 1.6 1.4	13.4 1.2 1.0	0.3 0.1 0.1
500 FT	. FLYON	ÆR 1	ARGET IA	S 135 I	KTS (NI	LITARY)							
87 88 89 810	93.1 94.0 93.3 93.4	84.7 86.4 87.3 85.4	8.4 7.6 6.0 8.0	7.1 6.9 6.1 7.5	0.5 0.5 0.4 0.5	98.8 100.6 99.6 99.6	100.9 103.3 103.0 102.3	101.2 103.9 103.4 102.8	6.7 6.3 6.5 6.6	102.0 102.9 103.0 102.4	15.5 12.5 9.5 11.5	13.5 11.5 9.0 10.5	0.4 0.6 0.5 0.6
Avg. Stå dv 902 CJ	93.4 0.4 0.4	86.0 1.2 1.4	7.5 1.1 1.2	6.9 0.6 0.7	0.5 0.1 0.1	99.6 0.7 0.9	102.4 1.1 1.3	102.8 1.2 1.4	6.5 0.2 0.2	102.6 0.5 0.5	12.2 2.5 2.9	11.1 1.9 2.2	0.5 0.1 0.1
500 FT	. FLYOV	ER T	ARGET IAS	5 120 W	(TS								
D15 D14 D17 D18 D19	90.7 91.4 90.1 91.8 90.6	83.9 83.2 82.0 84.0 82.7	6.8 8.3 8.0 7.8 7.9	6.4 7.4 7.6 7.4 7.6	0.4 0.5 0.6 0.5 0.6	95.6 96.5 95.2 97.0 95.1	97.9 97.1 97.5 98.8 97.1	98.2 97.9 97.7 99.0 97.3	6.8 7.5 7.1 7.8 7.5	100.0 99.4 100.2 101.4 98.4	11.5 13.0 11.5 11.5 11.5	12.0 14.0 11.5 10.5 11.0	0.2 1.2 0.3 0.3 0.2
Avg. Std Dv 902 CI	90.9 0.7 0.7	83.2 0.8 0.8	7.8 0.6 0.5	7.3 0.5 0.5	0.5 0.1 0.1	95.9 0.8 0.8	97.7 0.7 0.7	98.0 0.6 0.6	7.3 0.4 0.4	99.9 1.1 1.1	11.7 0.8 0.7	11.8 1.4 1.3	0.4 0.4

 MOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-10.3

BOEING VERTOL CH-47D HELICOPTER (CHINDOK)

SUMMARY NOISE LEVEL DATA

DOT/TSC 6/13/84

AS MEASURED *

		SI	TE: 16		CENTE	RLINE-CE	NTER (F	LUSH)	JI.	ILY 12,19	B3		
EV	SEL	ALs	SEL-AL	K(A)	Q 	EPML	PHL	PNLT	K(P)	OASPL	DUR(A)	DUR(P)	TC
500 f	FT. FLYC	Ner	TARGET IA	IS 105	KTS								
E20 E21 E22 E23 E24 E25	93.4 90.2 91.1 89.3 90.7 89.5	85.5 82.2 81.6 81.3 81.3 81.0	8.0 7.9 9.5 8.0 9.4 8.4	7.0 7.2 7.0 7.2 7.6 7.4	0.5 0.5 0.4 0.5 0.5	98.0 95.0 95.5 93.9 95.3 94.0	99.1 97.1 95.7 95.9 94.8 95.9	99.8 97.5 96.5 96.4 95.7 96.3	7.2 6.9 7.2 6.9 7.8 6.7	101.5 98.1 97.3 96.6 96.8 98.0	13.5 12.5 22.0 13.0 17.5 14.0	13.5 12.0 18.0 12.0 17.0 14.0	0.6 0.5 0.8 0.5 0.9 0.4
Avg. Std (902 (90.7 Dv 1.5 CI 1.2	82.2 1.7 1.4	8.5 0.7 0.6	7.2 0.2 0.2	0.5 0.0 0.0	95.3 1.5 1.2	96.4 1.5 1.2	97.0 1.5 1.2	7.1 0.4 0.3	98.0 1.8 1.5	15.4 3.7 3.0	14.4 2.5 2.1	0.6 0.2 0.1
1000	FT. FL	iover	- TARGET	IAS 135	KTS								
F26 F27 F28 F29	87.5 87.6 86.7 87.0	77.7 78.3 77.7 77.7	9.8 9.3 9.0 9.3	7.9 7.6 7.3 7.3	0.5 0.5 0.5 0.5	92.4 92.4 91.4 91.7	92.9 92.3 92.2 92.2	93.5 93.3 93.1 92.8	7.6 7.5 6.9 7.5	95.6 94.4 94.3 94.9	17.5 17.0 17.0 18.5	15.5 16.5 16.0 15.5	0.5 1.0 0.9 0.7
Avg. Std 902	87.2 Dv 0.4 Ci 0.5	77.9 0.3 0.3	9.3 0.3 0.4	7.5 0.3 0.3	0.5 0.0 0.0	92.0 0.5 0.6	92.4 0.3 0.4	93.2 0.3 0.3	7.4 0.3 0.4	94.8 0.6 0.7	17.5 0.7 0.8	15.9 0.5 0.6	0.8 0.2 0.2
TAKE	OFF 1	TARGET	IAS 85 KTS	G (ICAO)								
640 641 642 643 644 645	93.6 93.2 94.6 93.5 94.9 95.7	86.7 86.5 88.1 86.4 89.3 89.6	6.9 6.7 6.5 7.1 5.6 6.1	6.6 6.6 6.7 6.2 6.6	0.4 0.5 0.4 0.5 0.5	98.6 97.8 99.2 99.7 100.6	99.8 99.2 100.9 100.0 102.5 103.0	101.0 99.9 101.5 100.6 103.2 104.0	7.1 7.3 7.7 6.9 7.2	102.9 102.4 103.8 103.4 105.3 105.9	11.0 10.5 9.5 11.5 8.0 8.5	11.5 12.0 10.0 9.0 8.5	1.2 0.7 0.6 0.5 0.6 1.0
Avg. Std 902	94.3 Dv 1.0 CI 0.8	87.8 1.4 1.2	6.5 0.5 0.4	6.6 0.2 0.1	0.5 0.0 0.0	99.2 1.1 1.0	100.9 1.6 1.3	101.7 1.6 1.3	7.2 0.3 0.3	103.9 1.3 1.1	9.8 1.4 1.2	10.2 1.5 1.5	0.8 0.3 0.2
APPR	oach	TARGET	IAS 85 K	TS (ICA	0)								
H30 H31 H32 H33 H34 H35	101.6 101.0 102.1 102.2 102.2 100.9	94.2 94.1 95.8 95.7 95.9 94.0	7.3 6.9 6.3 6.3 6.3 6.3	7.0 6.5 6.2 6.3 6.4 7.2	0.5 0.4 0.4 0.4 0.5	105.7 105.3 106.4 106.2 106.1 104.9	107.3 107.2 109.0 108.9 109.0 107.2	108.4 108.2 109.8 109.4 109.6 108.1	6.9 6.6 6.3 6.6 6.5 7.2	107.4 107.5 108.7 108.4 107.4 105.9	11.0 11.5 10.5 10.5 9.5 9.0	11.0 12.0 11.0 10.5 10.0 9.0	1.1 0.9 0.8 0.5 0.6 0.9
Avg. Std 902	101.7 Dv 0.6 CI 0.5	95.0 0.9 0.8	6.7 0.4 0.3	6.6 0.4 0.3	0.5 0.0 0.0	105.8 0.6 0.5	108.1 0.9 0.8	108.9 0.8 0.6	6.7 0.3 0.3	107.5 1.0 0.8	10.3 0.9 0.8	10.6 1.0 0.8	0.8 0.2 0.2

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

÷.

TABLE NO. A.7-2.1

BOEING VERTOL CH-470 HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUNMARY NOISE LEVEL DATA AS MEASURED *

		S	ITE: 2		SI	DELINE	- 150 N	. SOUTH		JULY	12,1983		
EV	SEL	AL	SEL-AL	K(A)	0	EPNL	PNL	PNLT	K(P)	DASPL	DUR(A)) DUR(P)	TC
TAKEO	F F 1	arget i	AS 85 KT	S									
J47	86.8	77.2	9.5	7.5	0.5	91.1	90.1	91.1	7.7	97.3	18.5	20.5	1.0
J49	86.6	76.6	10.0	7.5	0.5	90.9	89.2	91.2	7.3	97.7	22.0	21.0	2.0
J51	86.6	76.6	10.0	7.9	v.5	90.9	90.5	91.7	7.4	98.9	18.5	17.5	1.2
Avg.	86.6	76.8	9.9	7.6	0.5	91.0	89.9	91.3	7.5	98.0	19.7	19.7	1.4
Std D	v 0.1	0.4	0.3	0.2	0.0	0.1	0.6	0.3	0.2	0.9	2.0	1.9	0.6
902 C	I 0.2	0.6	0.5	0.4	0.1	0.2	1.1	0.6	0.3	1.4	3.4	3.2	0.9
TAKEO	FF T	ARGET 1	AS 70 KTS	G (MILI	TARY)								
L53	87.5	77.8	9.6	8.2	0.6	92.2	91.8	93.2	7.7	98.2	15.0	14.5	1.4
L54	87.5	77.6	9.9	8.0	0.6	92.4	91.8	93.4	7.5	98.8	17.5	16.0	1.6
L55	87.9	77.9	10.0	7.9	0.6	92.8	91.8	93.5	7.5	98.1	18.0	17.0	1.7
Avg.	87.6	77.8	9.8	8.0	0.6	92.4	91.8	93.4	7.6	98.4	16.8	15.8	1.6
Std Dv	0.2	0.2	0.2	0.1	0.0	0.3	0.0	0.1	0.1	0.4	1.6	1.3	0.1
902 Ci	0.4	0.3	0.3	0.2	0.1	0.5	0.1	0.2	0.2	0.6	2.7	2.1	0.2
Approa	сн 1	TARGET 1	AS 100 K	TS									
K46	91.1	80.8	10.2	7.6	0.5	95.5	94.9	96.8	7.3	98.2	22.5	16.0	1.9
K48	90.4	81.7	8.8	7.1	0.4	95.5	95.3	96.9	7.2	99.8	17.0	15.5	1.6
K50	91.0	82.2	8.8	7.5	0.5	96.0	95.7	97.4	7.5	100.4	15.0	14.0	1.7
K52	90.5	81.5	9.0	7.7	0.5	95.4	95.7	97.5	7.1	99.9	14.5	13.0	1.9
Avg.	90.8	81.6	9.2	7.5	0.5	95.6	95.4	97.2	7.3	99.6	17.2	14.6	1.8
Std Dv	0.3	0.6	0.7	0.3	0.0	0.2	0.4	0.4	0.1	1.0	3.7	1.4	0.1
90% CI	0.4	0.7	0.8	0.3	0.1	0.3	0.4	0.4	0.2	1.1	4.3	1.6	0.2
approa	CH 1	ARGET I	AS 70 KT	6 (MILI	TARY)								
136	92.2	83.9	8.3	6.2	0.3	96.4	96.9	98.4	6.1	98.3	21.0	20.5	1.4
137	90.9	79.9	11.0	7.3	0.4	95.0	93.2	94.9	7.4	97.5	31.0	22.5	1.7
138	93.3	83.7	9.6	7.6	0.5	98.3	98.0	99.4	7.4	98.3	18.0	16.0	2.0
139	93.5	83.1	10.4	7.6	0.5	98.5	97.7	99.3	7.0	97.9	23.0	20.5	1.6
Avg.	92.5	82.7	9.8	7.2	0.4	97.0	96.4	98.0	7.0	98.0	23.2	19.9	1.7
Std Dv	1.2	1.9	1.2	0.7	0.1	1.7	2.2	2.1	0.6	0.4	5.6	2.7	0.2
902 CI	1.4	2.2	1.4	0.8	0.1	2.0	2.6	2.5	0.7	0.5	6.5	3.2	0.3

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUNIDITY, OK AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-2.2

ι

۰,

BOEING VERTOL CH-470 HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 2		SID	ELINE -	150 M.	South		JULY 12	2,1983		
EV	SEL	AL	SEL-AL	K(A)	Q 	EPNL	PNL	PHLT	K(P)	DASPLE	DUR(A)	SUR(P)	TC
500 F1	r. Flyon	ÆR	target 14	IS 135	KTS								
C11 C12 C13 C14	85.4 87.9 86.2 87.1	77.3 80.9 77.8 79.0	8.0 7.1 8.4 8.1	7.2 6.8 7.6 7.0	0.5 0.5 0.6 0.4	90.3 93.0 90.8 91.5	91.7 95.1 92.2 93.0	92.8 96.1 93.1 93.9	6.8 6.5 7.2 6.7	100.1 102.0 99.9 100.2	13.0 11.0 12.5 14.5	12.5 11.5 12.0 13.5	1.1 0.9 1.0 1.0
Avg. Std D 902 C	86.7 v 1.1 i i.3	78.7 1.6 1.8	7.9 0.6 0.7	7.2 0.4 0.4	0.5 0.0 0.1	91.4 1.2 1.4	93.0 1.5 1.8	94.0 1.5 1.7	6.8 0.3 0.3	100.6 1.0 1.1	12.7 1.4 1.7	12.4 0.9 1.0	1.0 0.1 0.1
500 F	T. FLYO	ver	TARGET I	AS 135	KTS (IC	AQ)							
A1 A2 A3 A4 A5 A6	86.6 86.4 86.7 86.6 86.4 86.4	77.9 77.5 77.1 78.0 77.1 77.4	8.7 8.9 9.6 8.6 9.3 9.0	6.8 7.2 7.4 7.1 7.4 7.5	0.4 0.5 0.5 0.5 0.5	92.2 91.9 92.2 92.4 92.2 91.7	93.2 91.7 92.4 92.0 92.9 92.2	94.4 93.0 93.1 93.4 94.1 93.6	6.1 7.2 7.2 6.6 7.1	98.6 99.5 98.3 100.2 98.3 97.2	19.0 17.5 19.5 16.5 18.0 16.0	19.0 17.5 18.0 18.0 17.0 17.0	1.2 1.3 0.7 1.7 1.4 0.9
Avg. Std D 902 C	86.5 v 0.1 I 0.1	77.5 0.4 0.3	9.0 0.4 0.3	7.2 0.3 0.7	0.5 0.0 0.0	92.1 0.3 0.2	92.4 0.6 0.5	93.5 0.6 0.5	6.9 0.4 0.4	98.7 1.0 0.9	17.7 1.4 1.1	17.7 0.8 0.6	1.2 0.4 0.3
500 F	T. FLYO	ver	TARGET I	AS 135	KTS (h)	ITARY)							
87 88 89 810	87.5 87.6 87.9 87.5	78.9 79.5 80.5 78.6	8.5 8.1 7.4 8.9	7.2 6.9 7.1 6.9	0.5 0.4 0.5 0.4	93.0 93.8 94.0 92.9	94.6 94.8 95.7 93.5	95.4 95.9 96.9 94.9	6.9 6.4 6.8 6.5	98.9 100.6 99.6 99.4	15.5 14.5 11.0 19.5	12.5 17.0 11.0 17.5	0.9 1.1 1.1 1.4
Avg. Std D 902 C	87.6 0 0.2 1 0.2	79.4 0.8 0.9	8.2 0.6 0.7	7.0 0.1 0.2	0.4 0.0 0.1	93.4 0.5 0.6	94.7 0.9 1.1	95.8 0.8 1.0	6.7 0.3 0.3	99.6 0.7 0.8	15.1 3.5 4.1	14.5 3.2 3.8	1.1 0.2 0.2
500 F	T. FLYO	iver	TARGET I	AS 120	KTS								
D15 D16 D17 D18 D19	85.5 86.2 84.7 86.5 85.0	77.0 76.9 76.3 77.7 76.9	8.4 9.4 8.4 8.9 8.2	7.0 7.3 7.4 7.2 8.2	0.4 0.5 0.5 0.7	90.3 90.2 89.6 90.7	90.4 90.0 89.9 91.1 90.9	91.3 90.9 90.9 92.3 91.8	7.6 7.6 7.3 7.0	99.0 99.0 98.8 99.1 99.6	16.0 19.0 14.0 17.0 10.0	15.5 17.0 15.5 16.0	0.9 0.9 0.9 1.2 0.9
Avg. Std [90% (85.6 w 0.8	76.9 0.5 0.5	8.7 0.5 0.5	7.4 0.4 0.4	0.5 0.1 0.1	90.2 0.5 0.5	90.5 0.5 0.5	91.4 0.6 0.6	7.4 0.3 0.3	99.1 0.3 0.3	15.2 3.4 3.3	16.0 0.7 9.8	1.0 0.2 0.2

 * - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

.

TABLE NO. A.7-2.3

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 2		SIDE	LINE -	150 M.	SOUTH		JULY 12	,1983		
EV	SEL	AL	SEL-AL®	K(A)	Q 	EPNL	PNL	PHLTE	K(P)	DASPL	DUR(A)	DUR(P)	<u>1</u>
500 FT	. FLYON	/ER	TARGET IA	S 105	KTS								
E20 E21 E22 E23 E24 E25	86.7 84.2 85.4 83.9 85.4 85.0	77.6 74.9 75.9 75.2 .0 75.3	9.1 9.3 9.4 8.7 9.4 9.7	7.0 8.1 7.3 7.4 7.5 7.6	0.4 0.6 0.5 0.5	90.9 89.4 88.6 89.5 89.5	90.9 88.8 89.1 89.5 88.9 88.9	92.2 90.3 90.6 90.6 87.8 90.2	6.8 7.0 7.1 7.7 7.4	97.8 97.0 96.9 96.7 96.7 97.9	19.5 14.0 19.5 15.0 18.0 18.5	18.5 18.0 13.5 18.0 18.0	1.3 1.5 1.5 1.1 1.2 1.4
Avg. Std Dv 902 Cl	85.1 1.0 0.8	75.8 1.0 0.8	9.3 0.3 0.3	7.5 0.4 0.3	0.5 0.1 0.1	89.6 0.8 0.8	89.3 0.8 0.7	90.6 0.8 0.7	7.2 0.4 0.3	97.2 0.5 0.4	17.4 2.4 1.9	17.2 2.1 2.0	1.3 0.2 0.1
1000 F	T. FLY	over	- TARGET	IAS 135	KTS								
F26 F27 F28 F29	84.0 94.7 84.4 83.9	74.6 75.6 75.2 74.2	9.3 9.1 9.2 9.7	7.4 7.3 7.2 7.8	0.5 0.5 0.4 0.5	88.2 88.5 88.4 88.2	88.8 87.9 88.2 88.4	89.6 89.1 89.1 89.0	7.0 7.8 7.4 7.8	96.5 95.5 94.6 94.9	18.5 17.5 18.5 17.5	16.5 16.0 18.0 15.0	0.8 1.3 0.9 0.5
Avg. Std Dv 902 Cl	84.2 0.4 0.4	74.9 0.6 0.7	9.3 0.3 0.3	7.4 0.3 0.3	0.5 0.0 0.0	88.3 0.1 0.2	88.3 0.4 0.5	89.2 0.3 0.3	7.5 0.4 0.4	95_4 0.8 1.0	18.0 0.6 0.7	16.4 1.2 1.5	0.9 0.3 0.4
TAKEOF	F T	ARGET	IAS 85 KT	s (ICAC	3)								
640 641 642 643 644 645	88.2 88.3 87.6 88.2 88.1 87.7	78.9 78.9 78.5 79.0 78.6 78.4	9.3 9.5 9.0 9.2 9.6 9.3	7.5 8.1 7.9 8.1 7.9 7.1	0.5 0.6 0.6 0.6 0.6 0.4	92.4 92.7 91.6 92.6 92.8 92.1	51.8 92.6 92.5 93.2 93.0 92.5	93.4 93.7 93.6 94.2 94.1 93.5	7.6 7.4 7.2 7.6 7.3 6.8	98.8 99.0 99.3 99.1 98.3 99.1	17.0 15.0 14.0 13.5 16.0 20.0	15.5 16.5 13.0 12.5 15.0 18.5	1.6 1.1 1.1 1.2 1.0
Avg. Std Dy 90% Cl	88.0 v 0.3 i 0.3	78.7 0.3 0.2	9.3 0.2 0.2	7.8 0.4 0.3	0.5 0.1 0.1	92.4 0.4 0.4	92.6 0.5 0.4	93.8 0.3 0.3	7.3 0.3 0.3	98.9 0.3 0.3	15.9 2.4 2.0	15.2 2.2 1.8	1.2 0.2 0.2
APPRO	ACH	TARGET	IAS 85 K	ts (1C	AO)								
H30 H31 H32 H33 H34 H35	91.7 90.6 91.4 92.6 91.3 91.2	82.7 80.6 81.9 84.2 82.7 82.0	9.0 10.0 9.5 8.4 8.6 9.2	7.2 7.7 7.6 6.6 6.9 7.4	0.5 0.5 0.4 0.4 0.5	96.7 95.4 96.4 97.4 96.2 95.8	97.1 94.6 95.9 98.2 96.9 96.2	99.0 96.3 97.7 99.9 98.9 98.1	6.6 7.4 6.5 6.5 6.5	100.7 100.6 100.3 100.2 99.3 100.7	17.5 20.0 17.5 18.5 17.5 18.0	15.0 17.0 14.0 14.5 13.0 15.5	1.9 1.6 1.8 1.7 2.1 1.9
Avg. Std D 902 C	91.5 v 0.7 i 0.5	82.4 1.2 1.0	9.1 0.6 0.5	7.2 0.4 0.3	0.5 0.1 0.0	96.3 0.7 0.6	96.5 1.2 1.0	98.3 1.2 1.0	6.8 0.5 0.4	100.3 0.5 0.4	18.2 1.0 0.8	14.8 1.4 1.1	1.8 0.2 0.1

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-3.1

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 3		SIDE	LINE -	150 M.	NORTH		JULY 1	2,1983		
EV	SEL	AL	SEL-AL	K(A)	Q 	EPNL	PNL	PNLT	K(P)	DASPL	DUR(A)	DUR(P)	TC
TAKEOFI	F TI	ARGET I	AS 85 KTS	;									
J47 J49 J51	84.8 85.8 85.5	75.9 77.1 76.7	8.9 8.7 8.9	6.9 7.1 7.2	0.4 0.4 0.5	90.4 90.2	87.5 89.4 89.7	88.2 90.8 90.8	7.3 7.6	91.4 96.2 96.9	19.5 16.5 17.0	- 20.5 17.5	0.8 1.4 1.3
Avg. Std Dv 902 Cl	85.4 0.5 0.8	76.6 0.6 1.0	8.8 0.1 0.2	7.1 0.2 0.3	0.4 0.0 0.1	90.3 0.1 0.6	88.9 1.2 2.1	99.9 1.5 2.5	7.4 0.2 0.7	94.8 3.0 5.1	17.7 1.6 2.7	19.0 2.1 9.5	1.2 0.3 0.6
Takeofi	F TI	ARGET I	AS 70 KTS	(HILI	TARY)								
L53 L54 L55	86.4 86.4 87.2	78.6 77.7 78.7	7.7 8.7 8.5	6.9 7.2 6.8	0.5 0.5 0.4	91.6 91.6 92.2	92.1 92.2 91.8	93.5 93.4 93.4	7.2 7.0 7.3	97.5 97.6 96.8	13.0 16.0 17.5	13.0 15.0 16.5	1.5 1-2 2.4
Avg. Std Dv 902 Cl	86.6 0.4 0.7	78.4 0.5 0.9	8.3 0.5 0.8	7.0 0.2 0.3	0.4 0.0 0.1	91.8 0.4 0.6	92.0 0.2 0.4	93.4 0.1 0.2	7.2 0.1 0.2	97.3 0.4 0.7	15.5 2.3 3.9	14.8 1.8 3.0	1.7 0.6 1.0
approa	сн Т	TARGET	IAS 100 K	TS									
K46 K48 K50 K52	93.5 92.4 92.4 92.9	86.1 84.5 84.8 84.8	7.5 7.9 7.6 8.1	6.8 6.5 6.8 7.2	0.4 0.4 0.5	97.9 96.4 96.2 96.8	98.9 97.4 96.7 97.0	100.5 99.1 98.3 98.8	6.9 6.2 7.1 7.2	100.2 98.5 98.1 98.1	12.5 16.0 13.0 13.0	12.0 14.5 13.0 13.9	1.6 1.7 1.6 1.8
Avg. Std Dv 9 02 CI	92.8 0.5 0.6	85.0 0.7 0.8	7.8 0.3 C.3	6.9 0.3 0.3	0.4 0.0 0.1	96.8 0.8 0.9	97.5 1.0 1.2	99.2 1.0 1.1	6.8 0.4 0.5	48.7 1.0 1.2	13.6 1.6 1.9	13.1 1.0 1.2	1.7 0.1 0.1
approa	CH	TARGET	IAS 70 KT	S (NIL	ITARY)								
136 137 138 139	94.7 95.2 95.3 93.4	87.2 87.1 86.8 84.3	7.5 8.1 8.5 9.1	6.7 6.5 6.7 7.1	0.4 0.4 0.4	99.3 99.4 99.6	100.2 99.5 100.1 98.0	101.8 101.5 101.9 99.8	6.8 6.5 6.6	100.4 100.6 100.2 99.7	13.5 17.5 18.5 19.0	13.0 17.0 14.5	1.5 1.9 1.8 1.8
Avg. Std Dv 902 CI	94.7 0.9 1.0	86.4 1.4 1.7	8.3 0.7 0.8	6.7 0.3 0.3	0.4 0.0 0.0	99.4 0.2 0.3	99.5 1.0 1.2	101.2 1.0 1.1	6.6 0.1 0.2	100.2 0.4 0.5	17.1 2.5 2.9	14.8 2.0 3.4	1.8 0.2 0.2

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

a substantian and the second

TABLE NO. A.7-3.2

1 11

· . .

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 3		SID	ELINE -	150 N.	NORTH		JULY 12	2,1983		
EV	SEL	AL	SEL-AL	K(A)	8	EPNL	PNL	PNLTs	K(P)	DASPL	DUR(A)	DUR(P)	TC
500 F	T. FLYON	ier	TARGET 14	IS 135	KTS								
C11 C12 C13 C14	84.5 86.5 86.8 87.2	79.1 78.5 79.0 79.4	7.4 8.0 7.8 7.8	6.9 7.3 7.5 7.1	0.5 0.5 0.6 0.5	91.0 91.0 91.7 91.8	93.4 92.8 93.1 92.9	94.2 93.7 94.2 94.1	6.5 6.6 7.5 6.8	99.3 100.3 99.5 100.1	12.0 12.5 11.0 12.5	11.0 12.5 10.0 14.0	0.9 0.9 1.1 1.2
Avg. Std D 902 C	86.8 v 0.3 i 0.4	79.0 0.4 0.4	7.7 0.2 0.3	7.2 0.3 0.3	0.5 0.0 0.0	91.4 0.4 0.5	93.1 0.3 0.3	94.1 0.2 0.3	6.9 0.5 0.5	99.8 0.5 0.6	12.0 0.7 0.8	11.9 1.7 2.1	1.0 0.1 0.2
500 F	T. FLYO	ver	TARGET I	AS 135	KTS (IC	AQ)							
A1 A2 A3 A4 A5 A6	86.0 87.1 87.6 87.1 86.5 86.4	78.0 78.4 78.7 77.9 77.8 77.1	8.0 8.7 8.9 9.2 8.7 9.4	7.2 7.4 7.2 7.3 7.2 7.5	0.5 0.4 0.5 0.5 0.5	90.9 92.4 92.6 92.5 91.6 91.4	91.5 92.5 92.6 92.6 91.7 91.3	92.7 93.7 93.5 93.6 92.5 92.1	7.0 7.3 7.2 7.5 7.7	98.8 98.8 100.0 99.0 97.9 98.8	13.0 15.0 17.5 18.0 16.5 17.5	14.5 15.5 17.0 17.5 16.5 16.0	1.2 1.2 0.9 1.0 1.3 1.0
Avg. Std D 90Z C	86.8 v 0.6 I 0.5	78.0 0.6 0.5	8.8 0.5 0.4	7.3 0.2 0.1	0.5 0.0 0.0	91.9 0.7 0.6	92.0 0.6 0.5	93.0 0.7 0.5	7.3 0.2 0.2	98.9 0.7 0.6	16.2 1.9 1.6	16.2 1.1 0.9	1.1 0.1 0.1
500 F	T. FLYO	ver	TARGET I	AS 135	KTS (NI	LITARY)							
87 88 89 810	87.4 89.8 58.0 88.8	78.9 81.2 81.2 80.0	8.5 8.6 6.8 8.8	7.2 7.5 6.8 7.1	0.5 0.5 0.5 0.4	92.1 95.6 93.9 93.9	92.9 96.5 95.9 94.6	94.3 97.6 97.1 95.0	6.8 7.1 6.5 7.2	98.7 99.4 100.3 99.4	15.0 14.0 10.0 17.0	14.0 13.5 11.0 17.5	1.3 1.1 1.2 0.7
Avg. Std D 902 C	88.5 v 1.0 I 1.2	80.4 1.1 1.3	8.2 0.9 1.1	7.2 0.3 0.3	0.5 0.0 0.0	93.9 1.4 1.7	95.0 1.6 1.9	96.0 1.6 1.9	6.9 0.3 0.4	99.4 0.7 0.8	14.0 2.9 3.5	14.0 2.7 3.1	1.1 0.3 0.3
500 F	T. FLYO	ver	TARGET 1	AS 120	KTS								
D15 D16 D17 D18 D19	84.9 86.3 85.3 85.6 85.6	76.7 77.9 76.8 77.2 78.1	8.1 8.3 8.6 8.4 7.5	7.2 7.1 7.5 7.4 7.2	0.5 0.5 0.5 0.5	89.0 90.9 89.4 89.9 89.8	89.9 90.9 90.3 90.9 91.6	91.2 92.3 91.5 92.3 92.9	7.0 7.2 7.0 6.9 7.0	97.3 98.6 97.5 98.8 98.5	13.5 15.0 14.0 13.5 11.0	13.5 15.5 13.5 12.5 10.0	1.3 1.4 1.1 1.5 1.3
Avg. Std D 902 C	85.5 v 0.5	77.4 0.7 0.6	8.2 0.4 0.4	7.3 0.2 0.2	0.5 0.0 0.0	89.8 0.7 0.7	90.7 0.6 0.6	92.0 0.7 0.6	7.0 0.1 0.1	98.1 0.7 0.7	13.4 1.5 1.4	13.0 2.0 1.9	1.3 0.1 0.1

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-3.3

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

.

DOT/TSC 6/13/84

SUNNARY NOISE LEVEL DATA

AS MEASURED *

		S I	TE: 3		SID	ELINE -	150 M.	NORTH		JULY 12	2,1983		
EV	SEL	ALs	SEL-AL	K(A)	<u>Q</u>	EPML	PHL	PHLTD	K(P)	DASPLE	DUR(A)	DUR(P)	TC
500 FT	. FLYON	ÆR	TARGET 1A	S 105	KTS								
E20 E21 E22 E23 E24 E25	86.4 85.5 85.2 85.0 85.1 85.3	77.1 77.1 75.9 76.7 76.4 77.1	9.3 8.5 9.2 8.3 8.7 8.1	7.2 7.2 7.2 7.4 7.1 7.5	0.4 0.5 0.4 0.5 0.4 0.5	90.7 89.7 89.4 89.2 89.3 89.4	91.1 90.9 89.1 90.2 90.2 90.3	92.6 92.3 90.6 91.6 91.4 91.8	6.6 6.5 7.2 7.1 6.6 7.0	98.0 96.0 96.1 95.6 95.6 96.5	19.5 15.0 19.0 13.5 17.0 12.0	16.5 13.5 16.5 12.0 16.0 12.0	1.5 1.4 1.5 1.4 1.2 1.5
Avg. Std Dv 902 CI	85.4 0.5 0.4	76.7 0.5 0.4	8.7 0.5 0.4	7.3 0.2 0.1	0.5 0.0 0.0	89.6 0.5 0.4	90.3 0.7 0.6	91.7 0.7 0.6	6.9 0.3 0.2	96.3 0.9 0.7	16.0 3.0 2.5	14.4 2.2 1.8	1.4 0.1 0.1
1000 F	T. FLY	over	- TARGET !	IAS 135	5 KTS								
F26 F27 F28 F29	85.8 85.8 85.2 84.5	77.6 78.5 77.1 75.7	8.2 7.3 8.1 8.8	7.0 6.2 7.3 7.2	0.4 0.4 0.5 0.4	90.0 89.8 89.4 88.4	91.7 92.4 91.3 89.9	92.2 93.2 92.0 90.5	6.8 6.0 6.9 6.6	95.6 95.1 95.0 94.5	15.0 15.0 13.0 17.0	14.0 12.5 12.0 16.0	0.5 0.8 0.7 0.6
Avg. Std Dy 902 CI	85.3 0.6 0.7	77.2 1.2 1.4	8.1 0.6 0.7	6.9 0.5 0.6	0.4 0.1 0.1	89.4 0.7 0.8	91.3 1.0 1.2	92.0 1.1 1.3	6.6 0.4 0.4	95.0 0.4 0.5	15.0 1.6 1.9	13.6 1.8 2.1	0.7 0.1 0.2
TAKEOF	F T	ARGET I	IAS 85 KT	G (ICAC	3)								
640 641 642 643 644 645	86.8 86.8 87.6 86.6 87.8 87.3	78.4 78.8 79.9 78.5 79.7 78.9	8.4 8.0 7.7 8.1 8.1 8.4	7.3 7.1 7.3 7.6 7.7	0.5 0.5 0.5 0.6 0.6	91.9 92.7 91.8 92.6 92.1	91.6 92.4 93.4 92.9 93.1 93.2	92.6 93.5 95.1 93.8 94.7 94.1	7.3 7.2 7.2 7.5 7.4	98.3 99.1 99.3 99.8 99.5 99.7	14.5 13.5 12.5 13.0 11.5 12.5	14.0 11.5 12.5 11.5 12.0	1.1 1.3 1.8 0.9 1.6 0.9
Avg. Std Dy 902 Cl	87.2 v 0.5 i 0.4	79.0 0.6 0.5	8.1 0.3 0.2	7.3 0.3 0.2	0.5 0.0 0.0	92.2 0.4 0.4	92.8 0.7 0.'	94.0 0.9 0.7	7.3 0.1 0.1	99.3 0.5 0.5	12.9 1.0 0.8	12.3 1.0 1.0	1.3 0.4 0.3
APPRO	ACH	TARGET	IAS 85 K	ts (IC	AQ)								
H30 H31 H32 H33 H34 H35	95.1 95.0 94.1 94.7 94.2 95.0	86.7 86.2 87.7 87.8 86.1 88.3	8.4 8.7 6.4 7.0 8.1 6.7	6.8 7.6 6.3 6.3 6.6 6.2	0.4 0.5 0.4 0.4 0.4	99.2 99.4 98.7 99.1 98.8 99.4	100.1 99.2 100.3 101.4 99.6 101.2	101.6 101.1 101.9 102.6 101.3 103.2	6.3 7.4 6.8 6.1 6.9 5.9	99.9 100.0 99.3 100.5 100.4 101.1	17.5 14.0 10.5 12.5 17.0 12.0	16.5 13.5 10.0 11.5 12.5 11.0	1.5 1.9 1.6 1.3 1.7 2.0
Avg. Std D 90% C	94.7 v 0.4 1 0.3	87.2 0.9 0.8	7.6 1.0 0.8	6.6 0.5 0.4	0.4 0.1 0.0	99.1 0.3 0.2	100.3 0.9 0.7	101.9 0.8 0.7	6.6 0.6 0.5	100.2 0.6 0.5	13.9 2.8 2.3	12.5 2.3 1.9	1.7 0.3 0.2

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-4.1

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

SUNMARY NOISE LEVEL DATA

AS MEASURED *

and the second

ومنافعهم والمعادمة والمعالية والمتعارية والمتعارية والمتعارية والمتعارية والمعادية والمعاركة والمعارية

		SI	TE: 4		CENTE	RLINE -	150 M.	WEST		JULY 12	2,1983		
EV	SEL	AL	SEL-AL	K(A)	0	EPNL	PNL	PNLT	K(P)	DASPL	DUR(A)	DUR(P)	TC
TAKEOFI	F TI	ARGET I	AS 85 KTS	;									
J47 J49 J51	85.0 85.0 85.4	76.8 76.8 76.9	8.2 8.2 8.5	6.7 7.1 7.2	0.4 0.5 0.5	88.9 89.6	88.7 88.9 89.6	89.4 89.8 90.5	- 7.3 7.5	90.6 91.5 92.2	17.0 14.5 15.5	17.5 16.5	0.6 0.9 0.9
Avg.	85.1	76.8	8.3	7.0	0.4	89.2	89.1	89.9	7.4	91.4	15.7	17.0	0.8
Std Dv	0.3	0.1	0.2	0.3	0.0	0.5	0.5	0.6	0.1	0.8	1.3	0.7	0.1
902 CI	0.4	0.1	0.3	0.4	0.1	2.3	0.8	0.9	0.5	1.4	2.1	3.2	0.2
TAKEOFI	F Ti	ARGET I	AS 70 KTS	(MILI	TARY)								
L53	88.3	80.1	8.3	7.3	0.5	93.4	94.5	95.1	7.1	97.7	13.5	14.5	0.6
L54	87.8	81.0	6.8	6.3	0.4	92.6	93.7	94.7	7.0	95.4	12.0	13.5	1.0
L55	89.4	82.2	7.2	6.7	0.4	94.3	95.5	96.3	6.8	97.5	12.0	15.0	0.9
Avg.	88.5	81.1	7.4	6.8	0.4	93.4	94.5	95.4	7.0	96.9	12.5	14.3	0.8
Std Dv	0.8	1.1	0.7	0.5	0.0	0.9	0.9	0.9	0.2	1.2	0.9	0.8	0.2
90% CI	1.3	1.8	1.3	0.8	0.1	1.4	1.5	1.4	0.3	2.1	1.5	1.3	0.3
APPR0A	CH '	TARGET	IAS 100 M	TS									
K46	96.9	89.7	7.2	6.2	0.4	100.7	102.8	103.5	6.7	100.9	14.5	12.0	0.6
K48	95.2	88.8	6.4	6.2	0.4	99.2	102.4	103.1	6.1	100.3	10.5	10.0	0.9
K50	95.6	89.3	6.3	6.6	0.5	99.4	102.4	103.0	6.6	99.7	9.0	9.5	0.6
K52	95.7	89.0	6.8	6.8	0.5	99.6	102.3	102.9	6.7	100.2	10.0	10.0	0.7
Avg.	95.9	89.2	6.6	6.4	0.4	99.7	102.5	103.1	6.5	100.3	11.0	10.4	0.7
Std Dv	0.7	0.4	0.4	0.3	0.1	0.7	0.2	0.2	0.3	0.5	2.4	1.1	0.1
902 CI	0.9	0.5	0.5	0.3	0.1	0.8	0.3	0.3	0.4	0.6	2.8	1.3	0.2
APPROA	ich	TARGET	1AS 70 K	TS (MII	ITARY)								
136	97.0	89.0	8.0	6.8	0.4	100.7	102.1	103.0	7.0	100.3	15.0	13.0	0.9
137	96.9	88.4	8.6	7.2	0.5	100.7	101.2	102.2	7.3	100.5	15.5	15.0	0.9
138	97.8	90.4	7.4	6.8	0.4	101.9	103.2	104.1	7.0	101.5	12.5	13.0	0.9
139	97.6	89.6	8.0	6.8	0.4	101.8	102.6	103.5	7.0	101.1	15.5	15.0	0.8
Avg.	97.3	89.3	8.0	6.9	0.4	101.3	102.3	103.2	7.1	100.9	14.6	14.0	0.9
Std Dv	0.4	0.9	0.5	0.2	0.0	0.6	0.8	0.8	0.1	0.6	1.4	1.2	0.0
902 CI	0.5	1.0	0.6	0.3	0.0	0.8	1.0	1.0	0.2	0.7	1.7	1.4	0.1

 NOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, HUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK DOT/TSC 6/13/84

TABLE NO. A.7-4.2

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SITE: 4			CENTERLINE - 150 M. WEST					JULY 12,1983			
EV	SEL	AL	SEL-AL	K(A)	<u>Q</u>	EPNL	PNL	PNLT	K(P)	DASPL	DUR(A)	DUR(P)	TC
500 FT	. FLYD	VER	TARGET 14	AS 135	KTS								
C11	86.5	79.4	7.1	6.5	0.4	90.6	93.1	93.4	6.5	93.4	12.5	12.5	0.4
C12	88.7	80.6	8.2	7.9	0.6	93.1	95.1	95.6	7.3	96.2	11.0	10.5	0.5
C13	87.4	80.5	6.9	7.1	0.5	91.8	95.4	95.6	6.6	96.5	9.5	8.5	0.2
C14	87.6	79.5	8.1	7.6	0.6	92.1	94.2	94.6	7.1	94.4	11.5	11.5	0.3
Avg.	87.6	80.0	7.6	7.3	0.5	91.9	94.5	94.8	6.9	95.1	11.1	10.7	0.4
Std Dv	0.9	0.6	0.6	0.6	0.1	1.0	1.0	1.0	0.4	1.5	1.2	1.7	0.1
902 CI	1.1	0.7	0.8	0.7	0.1	1.2	1.2	1.2	0.4	1.8	1.5	2.0	0.1
500 FT	. FLYO	ver	TARGET 1	AS 135	KTS (IC	AD)							
A1 A2 A3 A4 A5 A6	87.1 87.0 88.4 87.9 86.8 86.9	79.4 79.1 79.9 79.5 78.8 78.3	7.7 7.9 8.5 8.4 8.0 8.6	6.5 7.1 6.9 6.8 7.1 7.3	0.4 0.5 0.4 0.5 0.5	92.1 92.2 93.6 93.2 92.2 91.8	94.9 94.0 94.2 94.5 93.4 93.5	95.3 94.4 95.1 95.1 93.9 94.1	6.0 6.4 7.0 6.5 6.6 6.6	95.7 94.7 96.1 95.7 95.3 95.1	15.0 13.0 16.5 17.5 13.5 15.0	14.0 16.0 16.5 17.5 18.0 14.5	0.4 0.4 0.9 0.6 0.5 0.6
Avg.	87.3	79.2	8.2	7.0	0.4	92.5	94.1	94.6	6.5	95.4	15.1	16.1	0.6
Std Dv	0.7	0.6	0.4	0.3	0.0	0.7	0.6	0.6	0.3	0.5	1.7	1.6	0.2
902 CI	0.5	0.5	0.3	0.2	0.0	0.6	0.5	0.5	0.3	0.4	1.4	1.3	0.1
500 FT	. FLYO	ver	TARGET 1	AS 135	KTS (MI	LITARY)							
R7	90.1	81.4	8.7	7.7	0.5	95.1	96.3	96.9	7.5	96.4	13.5	12.5	0.9
88	90.3	82.8	7.4	6.9	0.5	96.1	98.4	98.9	6.7	97.1	12.0	12.0	0.5
R9	89.2	83.0	6.2	6.6	0.5	95.2	98.8	99.2	6.1	97.7	8.5	9.5	0.4
B10	88.6	80.3	8.3	6.8	0.4	94.5	96.1	96.5	6.5	96.8	16.5	17.0	0.4
Avg.	89.5	81.9	7.7	7.0	0.5	95.3	97.4	97.9	6.7	97.0	12.6	12.7	0.6
Sid Dv	0.8	1.3	1.1	0.5	0.1	0.7	1.4	1.4	0.6	0.5	3.3	3.1	0.2
902 CI	0.9	1.5	1.3	0.6	0.1	0.8	1.6	1.6	0.7	0.6	3.9	3.7	0.3
500 FT	. FLYO	ver	TARGET I	AS 120	KTS								
D15	85.6	78.0	7.5	7.0	0.5	90.1	91.3	91.9	7.3	93.5	12.0	13.0	0.6
D16	86.3	78.8	7.5	7.0	0.5	90.7	91.9	92.5	7.4	93.9	12.1	13.0	0.6
D17	85.2	77.9	7.3	6.5	0.4	89.3	91.5	91.9	6.5	93.0	13.0	13.5	0.5
D18	86.3	77.9	8.4	7.7	0.6	90.7	91.7	92.1	7.9	94.5	12.5	12.5	0.4
D19	86.1	78.2	7.8	7.1	0.5	89.9	91.9	92.4	7.3	93.8	12.5	10.5	0.5
Avg.	85.9	78.2	7.7	7.1	0.5	90.1	91.7	92.2	7.3	93.7	12.4	12.5	0.5
Std Dv	0.5	0.4	0.4	0.4	0.1	0.6	0.3	0.3	0.5	0.6	0.4	1.2	0.1
902 CI	0.5	0.4	0.4	0.4	0.1	0.6	0.3	0.3	0.5	0.5	0.4	1.1	0.1

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OK AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-4.3

ومحافظها كالمستحد الألباني وتركز والمنام المتكافل والمستحا والمراجع

والمعهد فأخاصه محاطر لمحاربتها وخطالة الاحصاص والعرافة

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 4		CENT	ERLINE -	150 M.	WEST		JULY 1	2,1983		
EV	SEL	ALa	SEL-AL	K(A)	0	EPNL	PNLs	PNLT	K(P)	DASPL	DUR(A)	DUR(P)	TC
500 FT.	. FLYON	ÆR '	TARGET IA	S 105	KTS								
E20 E21 E22 E23 E24 E25	87.8 85.9 86.2 85.3 86.0 85.8	78.8 77.6 77.3 77.4 77.4 78.3	9.0 8.3 8.9 7.9 8.6 7.5	7.4 7.1 7.2 6.7 7.1 6.5	0.5 0.4 0.4 0.4 0.4	92.2 90.0 90.4 89.5 89.8	93.4 90.6 91.7 90.5 90.8 91.8	93.8 91.1 92.7 91.4 91.5 92.4	7.1 7.8 6.8 7.3 6.3	93.9 91.4 91.0 91.0 92.3 92.8	16.5 14.5 17.5 15.0 16.5 14.5	15.0 14.0 13.5 12.5 15.0	0.4 0.6 1.0 1.1 0.6 0.6
Avg. Std Dv 902 CI	86.2 0.9 0.7	77.8 0.6 0.5	8.4 0.6 0.5	7.0 0.3 0.3	0.4 0.0 0.0	90.4 1.1 1.0	91.5 1.1 0.9	92.2 1.0 0.8	7.1 0.6 0.5	92.1 1.2 0.9	15.7 1.3 1.0	14.0 1.1 1.0	0.7 0.2 0.2
1000 F	T. FLY	over	TARGET 1	AS 135	i KTS								
F26 F27 F28 F29	83.4 83.6 82.6 83.2	73.7 74.7 73.3 73.6	9.7 8.8 9.3 9.7	7.4 7.3 7.6 7.6	0.5 0.5 0.5 0.5	86.8 87.4 86.0 86.7	87.2 88.1 86.3 86.0	87.6 88.5 87.0 86.6	7.3 6.5 7.4 7.9	88.4 88.2 86.9 88.8	20.0 16.5 16.5 19.0	18.0 23.5 16.5 19.5	0.5 0.4 0.9 0.6
Avg. Std Dv 902 Cl	83.2 0.4 0.5	73.8 0.6 0.7	9.4 0.4 0.5	7.5 0.2 0.2	0.5 0.0 0.0	86.7 0.6 0.7	86.9 1.0 1.2	87.4 0.8 1.0	7.2 0.6 0.7	88.1 0.8 1.0	18.0 1.8 2.1	19.4 3.0 3.5	0.6 0.2 0.3
TAKEOFI	F TI	ARGET I	AS 85 KTS	G (ICAO	0								
640 641 642 643 644 645	88.6 87.9 88.7 88.4 89.5 89.8	81.9 80.8 82.0 81.2 83.1 83.6	6.7 7.2 6.7 7.1 6.4 6.2	6.4 6.5 6.4 6.7 6.4 6.2	0.4 0.4 0.4 0.4 0.4 0.4	93.1 92.2 93.0 - 93.8 94.4	94.6 93.4 94.4 93.5 96.3 96.5	95.0 93.9 95.0 94.1 96.7 97.2	6.8 7.3 6.9 7.0 6.7	96.9 96.6 95.2 96.4 98.2	11.0 12.5 11.0 11.5 10.0 10.0	15.0 13.5 14.0 10.5 12.0	0.4 0.7 0.6 0.7 0.4 0.7
Avg. Std Dv 902 CI	88.8 0.7 0.6	82.1 1.1 0.9	6.7 0.4 0.3	6.4 0.2 0.1	0.4 0.0 0.0	93.3 0.9 0.8	94.8 1.3 1.1	95.3 1.4 1.1	7.0 0.2 0.2	96.6 0.9 0.8	11.0 0.9 0.9	13.0 1.8 1.7	0.6 0.2 0.1
APPROA	CH '	TARGET	IAS 85 KT	IS (ICA	1 0)								
H30 H31 H32 H33 H34 H35	96.6 97.2 98.2 97.3 96.6	88.8 89.3 89.5 90.4 88.9	7.8 7.9 8.7 6.9 7.7	ND DA 7.1 7.4 7.1 6.4 7.4	0.5 0.5 0.4 0.4 0.5	100.5 101.7 102.2 101.6 101.0	102.2 103.3 103.2 103.6 103.3	102.8 103.9 104.0 104.6 104.1	7.0 7.4 6.9 6.5 6.7	100.4 101.7 101.3 101.8 101.7	12.5 12.0 16.5 12.0 11.0	12.5 11.0 16.0 12.5 10.5	0.6 0.6 0.9 0.9 0.9
Avg. Std Dv 902 Cl	96.8 1.2 1.0	89.0 1.2 1.0	7.8 0.6 0.5	7.0 0.5 0.4	0.5 0.1 0.1	100.9 1.5 1.2	102.6 1.4 1.2	103.3 1.5 1.2	6.9 0.3 0.3	100.8 1.4 1.2	13.7 2.9 2.4	12.6 1.9 1.6	0.8 0.1 0.1

* ~ NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-5.1

*** **

• • • • • • • •

ومحتمد والمحاولة والمحاولة والمحاوية والمحاولة وا

*

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUNMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 5		CENTI	ERLINE -	188 M.	EAST		JULY 1	2,1983		
EV	SEL	ALs	SEL-ALD	K(A)	0	EPHL	PNL	PHLT	K(P)	OASPL	DUR(A)	DUR(P)	TC
TAKEO	FF TI	ARGET I	as 85 kts	5									
J47 J49 J51	86.3 86.9 87.9	77.9 78.4 81.0	8.3 8.4 6.9	7.1 6.9 6.8	0.5 0.4 0.5	91.0 92.3	90.4 91.2 93.8	91.1 91.8 94.5	- 7.4 7.5	93.7 93.4 95.2	15.0 16.5 10.5	17.5 11.0	0.8 0.6 0.7
Avg.	87.0	79.1	7.9	6.9	0.4	91.7	91.8	92.5	7.4	94.1	14.0	14.2	0.7
Sta D	v 0.8	1.6	0.8	0.1	0.0	0.9	1.8	1.8	0.1	1.0	3.1	4.6	0.1
902 C	i 1.4	2.8	1.4	0.3	0.0	4.0	3.0	3.0	0.3	1.6	5.3	20.5	0.1
Takeo	FF TI	ARGET I	AS 70 KTS	(HILI	TARY)								
L53	91.5	85.7	5.9	6.3	0.5	96.6	99.4	100.0	6.6	100.1	8.5	10.0	0.6
L54	91.2	85.3	5.9	6.3	0.5	96.6	98.9	99.9	6.9	100.4	8.5	9.5	1.0
L55	92.1	85.8	6.3	6.6	0.5	97.3	99.5	100.4	7.1	101.4	9.0	9.5	0.9
Avg.	91.6	85.6	6.0	6.4	0.5	96.8	99.2	100.1	6.8	100.6	8.7	9.7	0.8
Std D	v 0.4	0.2	0.2	0.2	0.0	0.4	0.3	0.3	0.3	0.6	0.3	0.3	0.2
902 C	i 0.7	0.4	0.4	0.3	0.0	0.7	0.5	0.5	0.5	1.1	0.5	0.5	0.3
Appro	ach '	TARGET	IAS 100 H	TS									
K46	97.3	90.1	7.2	6.7	0.4	101.4	103.7	104.4	6.4	101.8	12.0	12.5	0.6
K48	97.3	91.5	5.7	6.2	0.4	101.9	105.3	105.8	6.6	103.1	8.5	8.5	0.4
K50	96.9	91.4	5.4	6.0	0.4	101.4	105.5	106.0	6.1	103.2	8.0	7.5	0.5
K52	96.5	89.8	6.7	6.5	0.4	100.7	103.4	104.0	6.6	101.4	10.5	10.5	0.6
Avg.	97.0	90.7	6.3	6.3	0.4	101.3	104.5	105.0	6.4	102.4	9.7	9.7	0.5
Std D	v 0.4	0.9	0.8	0.3	0.0	0.5	1.1	1.0	0.2	0.9	1.8	2.2	0.1
90% C	1 0.4	1.1	1.0	0.4	0.0	0.5	1.3	1.2	0.3	1.1	2.2	2.6	0.1
appro	ach	TARGET	IAS 70 K	rs (H11	ITARY)								
136	99.3	92.2	7.0	7.0	0.5	103.7	105.8	106.5	7.1	104.2	10.0	10.5	0.7
137	99.3	91.2	8.1	7.1	0.5	103.4	104.7	105.5	7.0	103.9	14.0	13.5	0.8
138	99.7	94.0	5.8	6.0	0.4	103.8	106.9	107.5	6.3	105.0	9.0	10.0	0.6
139	99.4	93.1	6.3	6.5	0.4	103.5	105.9	106.6	6.8	103.1	9.5	10.5	0.7
Avg.	99.4	92.6	6.8	6.7	0.5	103.6	105.8	106.5	6.8	104.0	10.6	11.1	0.7
Std D	v 0.2	1.2	1.0	0.5	0.0	0.2	0.9	0.8	0.4	0.8	2.3	1.6	0.1
90Z C	1 0.3	1.4	1.2	0.6	0.0	0.2	1.1	1.0	0.4	0.9	2.7	1.9	0.1

* ~ NOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, HUHIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-5.2

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 5				CENTERLINE - 188 N. EAST				JULY 12,1983					
EV	SEL	AL	SEL-AL	K(A)	8	EPNL	PNLs	PNLT	K(P)	DASPL)UR(A)	DUR(P)	TC
500 F1	. FLYOV	ER T	ARGET 14	NS 135 K	TS								
C11 C12 C13 C14	86.7 87.8 87.8 87.8	78.2 80.2 79.8 80.4	8.5 7.6 8.0 7.2	7.9 7.3 7.3 7.1	0.6 0.5 0.5 0.5	91.4 92.4 92.4 92.3	92.3 94.8 94.1 95.0	93.0 95.4 94.3 95.6	7.9 6.7 7.4 6.5	96.4 97.0 96.1 94.9	12.0 11.0 12.5 10.5	11.5 11.0 12.5 10.5	1.1 9.6 0.4 0.6
Avg. Std D 90% C	87.5 v 0.5 1 0.6	79.7 1.0 1.2	7.8 0.6 0.7	7.4 0.4 0.4	0.5 0.0 0.1	92.1 0.5 0.6	94.1 1.2 1.5	94.6 1.2 1.4	7.1 0.6 0.7	96.1 0.9 1.1	11.5 0.9 1.1	11.4 0.9 1.0	0.7 0.3 0.3
500 F	T. FLYO	ver '	TARGET I	AS 135	KTS (ICA	0)							
A1 A2 A3 A4 A5 A6	86.6 87.7 87.2 88.5 87.2 87.2	79.1 79.8 78.9 80.2 79.3 79.0	7.5 7.9 8.3 8.3 7.9 8.2	7.3 7.0 6.7 6.9 6.4 7.2	0.5 0.5 0.4 0.4 0.4 0.5	91.6 92.9 92.4 94.1 92.3	94.0 95.0 94.4 95.8 94.5 94.5	94.5 95.4 94.9 96.3 94.9 94.7	6.7 6.4 6.4 6.6 -	96.3 96.1 95.8 95.8 95.8 95.8	10.5 13.5 17.0 16.0 17.0 13.5	11.5 14.5 15.0 15.5 14.0	0.5 0.5 0.5 0.5 0.5
Avg. Std D 902 D	87.4)v 0.6)1 0.5	79.4 0.5 0.4	8.0 0.3 0.3	6.9 0.3 0.3	0.4 0.1 0.1	92.7 0.9 0.9	94.7 0.6 0.5	95.1 0.6 0.5	6.5 0.1 0.1	96.1 0.3 0.3	14.6 2.6 2.1	14.1 1.6 1.5	0.5 0.0 0.0
500 F	FT. FLYO	IVER	TARGET	IAS 135	KTS (MI	LITARY)							
87 88 89 810	89.0 90.0 91.0 90.3	81.4 83.5 84.7 83.3	7.7 6.5 6.3 7.0	6.3 6.5 6.3 6.1	0.4 0.4 0.4	94.8 95.9 97.2 96.1	97.4 99.3 100.6 99.1	97.7 99.8 101.0 99.6	6.0 6.2 5.9	96.7 53.4 99.9 98.6	16.5 10.0 10.0 14.0	15.0 9.5 10.0 12.5	0.4 0.5 0.4 0.5
Avg. Std 90%	90.1 Dv 0.8 C1 1.0	83.2 1.4 1.6	6.9 0.6 0.7	6.3 0.2 0 2	0.4 0.0 0.1	96.0 1.0 1.2	99.1 1.3 1.6	99.5 1.3 1.6	6.1 0.2 0.2	98.4 1.3 1.6	12.6 3.2 3.8	11.7 2.5 3.0	0.4 0.1 0.1
500	FT. FLY	over	TARGET	IAS 120	KTS								
D15 D16 D17 D18 D19	86.4 86.2 86.4 87.3 86.2	79.0 78.5 79.6 79.5 78.6	7.4 7.7 6.8 7.9 7.6	7.5 8.1 6.7 7.3 7.3	0.6 0.7 0.5 0.5	91.0 90.9 90.4	92.8 92.7 93.4 93.0 92.5	93.4 93.1 93.8 94.5 92.9	7.7 6.9 7.2	96.4 95.9 95.8 94.8 94.3	9.5 9.0 10.5 12.0 11.0	10.0 10.5 11.0	0.6 0.3 0.5 1.6 0.5
Avg. Std 902	. 86.5 Dv 0.5 Cl 0.5	79.0 0.5	7.5 0.4 0.4	7.4 0.5 0.5	0.5 0.1 0.1	90.8 0.3 0.6	92.9 0.3	93.5 0.7 5 0.6	7.2 0.4 0.7	95.4 0.9 0.8	10.4 1.2 1.1	* 10.5 0.5 0.8	0.7 0.5 0.5

 * - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.7-5.3

Stanne -

is not barren har generation of a structure of a structure of a structure of a structure of the structure of t

BOEING VERTOL CH-47D HELICOPTER (CHINOOK)

DOT/TSC 6/13/84

- ----

SUNNARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 5		CENT	ERLINE -	188 N.	EAST		JULY 1	2,1983		
EV	SEL	AL	SEL-AL	K(A)	0	EPNL	PNL	PNLTB	K(P)	DASPL	DUR(A)	DUR(P)	TC
500 F1	r. FLYO	ver	TARGET IA	IS 105	KTS								
E20 E21 E22 E23 E24 E25	89.3 86.1 86.7 86.3 86.5 86.1	80.6 77.6 77.5 78.3 77.4 78.2	8.8 8.4 9.2 8.0 9.2 7.9	7.6 7.8 7.1 7.6 7.8 7.2	0.5 0.4 0.5 0.5	93.6 90.4 90.8 90.5 - 90.3	94.6 91.4 91.5 92.2 91.6 92.2	95.2 92.2 92.0 92.7 92.2 92.9	7.4 7.6 7.0 7.5 6.7	95.2 93.4 91.8 92.7 92.1 95.5	14.5 12.0 19.5 11.5 15.0 12.5	14.0 12.0 18.5 11.0 12.5	0.8 0.8 0.5 0.6 0.6 0.7
Avg. Std D 902 Cl	86.8 v 1.3 I 1.0	78.2 1.2 1.0	8.6 0.6 0.5	7.5 0.3 0.2	0.5 0.1 0.0	91.1 1.4 1.4	92.2 1.2 1.0	92.9 1.2 1.0	7.2 0.4 0.4	93.4 1.6 1.3	14.2 3.0 2.4	13.6 2.9 2.8	0.7 0.1 0.1
1000	FT. FLY	over	TARGET	IAS 135	i KTS								
F26 F27 F28 F29	83.7 83.5 82.4 82.5	75.0 76.0 73.7 -3.6	8.6 7.5 8.7 8.9	7.1 6.3 6.9 7.0	0.4 0.4 0.4	87.7 87.3 86.3 86.2	88.2 90.3 86.9 86.2	88.8 91.0 87.3 87.1	7.2 5.7 6.5 7.0	90.6 90.1 89.0 89.7	16.5 15.5 18.0 19.0	17.0 13.0 23.5 20.5	0.6 0.7 0.4 0.9
Avg. Std D 902 C	83.0 v 0.7 1 0.8	74.6 1.1 1.3	8.4 0.6 0.7	6.8 0.4 0.4	0.4 0.0 0.0	86.9 0.7 0.9	87.9 1.8 2.1	88.5 1.8 2.1	6.6 0.7 0.8	89.9 0.7 0.8	17.2 1.6 1.8	18.5 4.5 5.3	0.6 0.2 0.2
Takeo	FF T	ARGET	IAS 85 KT	5 (1CA())								
640 641 642 643 644 645	92.8 92.2 93.5 92.3 95.1 93.6	86.4 86.5 87.8 86.4 90.5 88.6	6.5 5.8 5.7 5.8 4.6 5.0	6.6 5.9 5.5 6.1 4.6 5.4	0.5 0.4 0.3 0.4 0.3 0.4	98.7 97.1 100.0	101.5 100.2 101.8 100.2 104.4 102.4	102.5 101.0 102.4 100.8 104.8 102.9	6.4 5.3	105.5 103.2 103.7 101.7 105.7 104.2	9.5 9.5 10.5 9.0 10.0 8.5	9.0 - 9.5 9.5	1.1 0.7 0.6 0.8 0.4 0.5
Avg. Std D 90% C	93.3 v 1.1 I 0.9	87.7 1.6 1.3	5.6 0.6 0.5	5.7 0.7 0.6	0.4 0.1 0.0	98.6 1.4 2.4	101.7 1.5 1.3	102.4 1.4 1.2	6.1 0.6 1.1	104.0 1.5 1.2	9.5 0.7 0.6	9.3 0.3 0.5	0.7 0.2 0.2
APPRO	ACH	TARGET	IAS 85 K	ts (ICA	1 0)								
H30 H31 H32 H33 H34 H35	99.1 97.7 98.7 98.7 99.2 97.9	92.3 90.5 91.5 92.8 92.9 91.7	6.8 7.2 7.2 5.9 6.2 6.2	6.7 7.2 6.7 6.2 6.2 6.4	0.5 0.4 0.4 0.4 0.4	103.4 101.9 102.7 103.3 103.0 102.6	106.1 103.7 105.2 106.9 106.4 105.6	106.9 104.4 106.0 107.6 106.8 106.2	6.8 7.6 6.6 6.3 6.1 6.7	104.5 102.6 102.9 104.4 104.4 103.8	10.5 10.0 12.0 9.0 10.0 9.5	9.0 10.0 10.5 8.0 9.5 9.0	0.8 0.7 0.9 0.7 0.5 0.6
Avg. Std D 90% C	98.6 v 0.6 1 0.5	91.9 0.9 0.8	6.6 0.6 0.5	6.6 0.4 0.3	0.5 0.0 0.0	102.8 0.5 0.4	105.7 1.1 0.9	106.3 1.1 0.9	6.7 0.5 0.4	103.8 0.8 9.7	10.2 1.0 0.8	9.3 0.9 0.7	0.7 0.2 0.1

* - NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

APPENDIX B

Direct Read Acoustical Data and Duration Factors for Flight Operations

In addition to the magnetic recording systems, four direct-read, Type-1 noise measurement systems were deployed at selected sites during flight operations. The data acquisition is described in Section 5.6.2.

These direct read systems collected single event data consisting of maximum A-weighted sound level (AL), Sound Exposure Level (SEL), integration time (T), and equivalent sound level (LEQ). The SEL and dBA, as well as the integration time were put into a computer data file and analyzed to determine two figures of merit related to the event duration influence on the SEL energy dose metric. The data reduction is further described in Section 6.2.2; the analysis of these data is discussed in Section 9.4.

This appendix presents direct read data and contains the results of the helicopter noise duration effect analysis for flight operations. The direct read acoustical data for static operations is presented in Appendix D.

Each table within this appendix provides the following information:

Run No.	The test run number
SEL(dB)	Sound Exposure Level, expressed in decibels
AL(dB)	A-Weighted Sound Level, expressed in decibels
T(10-dB)	Integration time
K(A)	Propagation constant describing the change in dBA with distance
Q	Time hiistory "shape factor"
Average	The average of the column
N	Sample size
Std Dev	Standard Deviation
90% C.I.	Ninety percent confidence interval
Mic Site	The centerline mircophone site at which the measurements were taken

TABLE B.1.1

MIC SITE: 5

-

.. .

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT ICAO FLYOVER/TARGET IAS=135 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	0
Al	87.4	79.6	11	7.5	.5
A2	88.5	80.2	15	7.1	.5
A3	87.7	79.4	16	6.9	.4
A4	89.1	81	15	6.9	.4
A5	87.5	79.5	16	6.6	.4
A6	87.6	79.5	13	7.3	.5
average	88.00	79.90	14.30	7.00	.5
N	6	6	6	6	6
STD.DEV.	0.68	0.63	1.97	.3	.06
90% C.I.	0.56	0.51	1.62	.25	.05

TABLE B.1.2

HELICOPTER:	BOEING-VERTOL CH-47D
TEST DATE:	7-12-83
OPERATION:	500 FT ICAO FLYOVER/TARGET IAS=135 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
A1	88	80.7	10	7.3	.5
A2	88.8	80.9	12	7.3	.5
A3	88.9	80	14	7.8	.6
A4	89.4	81.2	15	7	.4
A5	87.8	79.9	13	7.1	.5
A6	88.2	79.5	16	7.2	.5
average	88.50	80.40	13.30	7.30	.5
N	6	6	6	6	6
STD.DEV.	0.61	0.66	2.16	.27	.04
90% C.1.	0.51	0.54	1.78	.22	.04

TABLE B.1.3

MIC SITE: 4

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

- 75

×.

ł.

,

NG 32.

OPERATION: 500 FT ICAO FLYOVER/TARGET IAS=135 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
Al	87.6	79.7	14	6.9	.4
A2	88.3	80.2	12	7.5	.5
A3	89.6	81.1	16	7.1	.4
A4	88.9	80.3	17	7	.4
A5	87.7	79.6	16	6.7	.4
Aó	87.6	79.3	15	7.1	.5
average	88.30	80.00	15.00	7.00	.5
N	6	6	6	6	6
STD.DEV.	0.82	0.64	1.79	.26	.05
90% C.1.	0.68	0.53	1.47	.21	.04

TABLE 8.2.1

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT MILITARY FLYOVER/TARGET IAS=135 KTS

٩	K(A)	T(10-D8)	AL(DB)	SEL(DB)	RUN NO.
.6	7.8	9	82.3	89.7	B7
.6	7	7	85.5	91.4	B 8
.4	6	9	86.1	91.8	B9
.5	7.1	9	83.8	90.6	B10
.5	7.00	8.50	84.40	90.90	average
4	4	4	4	4	N
.08	.74	1.00	1.72	0.93	STD.DEV.
.1	.87	1.18	2.02	1.09	90% C.I.

TABLE B.2.2

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT MILITARY FLYOVER/TARGET IAS=135 KTS

MIC	SITE:	1
-----	-------	---

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
87	91	83.1	14	6.9	.4
B8	92.2	85.8	10	6.4	.4
B9	92.6	<u>8</u> 7.9	7	5.6	.4
B10	90.4	82.7	13	6.9	.5
average	91.60	84.90	11.00	6.40	.4
N	4	4	4	4	4
STD.DEV.	1.02	2.44	3.16	.63	.01
90% C.I.	1.21	2.87	3.72	.74	.02

TABLE 8.2.3

TEST DATE: 7-12-83

OPERATION: 500 FT MILITARY FLYOVER/TARGET IAS=135 KTS

RUN NO.	SEL(DB)	AL(08)	T(10-DB)	K(A)	Q
B7	91.4	82.4	13	8.1	.6
B 8	92.5	85.3	12	6.7	.4
B9	90.7	84.9	7	6.9	.5
B10	89.4	81.4	16	6.6	.4
average	91.00	83.50	12.00	7.10	.5
N	4	4	4	4	4
STD.DEV.	1.30	1.90	3.74	.68	.1
90% C.I.	1.53	2.23	4.40	.8	.12

TABLE B.3.1

HELICOPTER: BOEING-VERTCL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT FLYOVER/TARGET IAS=135 KTS

		MIC SITE:			5
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
C11	86.3	77.5	12	8.2	.6
C12	87.6	79.8	12	7.2	.5
C13	87.7	79.6	15	6.9	.4
C14	87.7	79.7	13	7.?	.5
average	87.30	79.20	13.00	7.40	.5
N	4	4	4	4	4
STD.DEV.	0.68	1.10	1.41	.55	.09
90% C.I.	0.81	1.30	1.66	.65	.1

TABLE B.3.2

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

No.

OPERATION: 500 FT FLYOVER/TARGET IAS=135 KTS

RUN NO.	SEL (DB)	AL(DB)	1 O-DB)	K(A)	0
C11	87.9	80.8	9	7.4	.6
C12	89.3	82	10	7.3	.5
C13	89.1	80.9	10	8.2	.7
C14	88.5	81.1	11	7.1	.5
averagf	88.70	81.20	10.00	7.50	.6
N	4	4	4	4	4
STD.DEV.	0.63	0.55	0.82	.48	.07
90% C.I.	0.74	0.64	0.96	.56	.08

TABLE 8.3.3

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT FLYOVER/TARGET IAS=135 KTS

					4
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Ø
C11	87.1	79.7	12	6.9	.5
C12	89.4	81.2	11	7.9	.6
C13	88.5	81.2	9	7.7	.6
C14	88.3	80	12	7.7	.6
average	88.30	80.50	11.00	7.50	.6
N	4	4	4	4	4
STD.DEV.	0.95	0.79	1.41	.45	.07
90% C.I.	1.11	0.93	1.66	.53	.08

TABLE B.4.1

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

a,

OPERATION: 500 FT FLYOVER/TARGET IAS=120 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
D15	86.2	78.6	12	7	.5
D16	86.5	78.1	15	7.1	.5
D17	86.5	79.1	12	6.9	.5
D18	87	79	16	6.6	.4
D19	85.9	77.9	15	6.8	.4
average	86.40	78.50	14.00	6.90	.4
N	5	5	5	5	5
STD.DEV.	0.41	0.53	1.87	.2	.03
90% C.1.	0.39	0.51	1.78	.19	.03

TABLE B.4.2

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT FLYOVER/TARGET IAS=120 KTS

MIC SITE: 1

RUN NO.	SEL(DB)	AL(DB) T	(10-DB)	K(A)	Q
D15	86.9	79.7	10	7.2	.5
D16	87.5	79.3	13	7.4	.5
D17	86.6	78.7	12	7.3	.5
D18	88	79.7	12	7.7	.6
D19	87	79.4	10	7.6	.6
AVERAGE	87.20	79.40	11.40	7.40	.5
N	5	5	5	5	5
STD.DEV.	0.55	0.41	1.34	.2	.03
90% C.I.	0.53	0.39	1.28	.19	.03

		}	ABLE 8.4.3		
HELICOPTER:	BOEING-V	ertol CH-	470		
TEST DATE:	7-12-83				
OPERATION:	500 FT F	lyover/ta	RGET IAS=1	20 KTS	
			MI	SITE:	4
RUN ND.	SEL(DB)	AL(DB) 1	[(10-DB)	K(A)	Q
D15	NA	NA	NA	NA	NA
D16	87.2	78.7	14	7.4	.5
017	85.5	77.5	14	7	.5
017	87.2	78.3	13	8	.6
D19	86.8	78.7	12	7.5	.5
AVERAGE	86.70	78.30	13.30	7.50	.5
N	4	4	4	4	4
STD.DEV.	0.81	0.57	0.96	.41	.06
90% C.I.	0.95	0.67	1.13	.49	.07

TABLE 8.5.1

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT FLYOVER/TARGET IAS=105 KTS

	MIC SITE:				5
RUN NO.	SEL (08)	AL(DB)	T(10~DB)	K(A)	Q
E20	88.9	80.2	11	8.4	.7
E21	85.3	76.6	10	8.7	.7
E22	85.8	76.7	13	8.2	.,
E23	NA	NA	10	NA	NA
E24	86	76.3	15	8.2	
E25	86.4	78,4	13	7.2	.5
average	86.50	77.60	12.00	8.10	.6
N	5	5	6	5	5
STD.DEV.	1.41	1.65	2.00	.57	.09
90% C.I.	1.34	1.57	1.65	.54	.09

TABLE B.5.2

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT FLYOVER/TARGET IAS=105 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	8
E20	90.2	82.1	13	7.3	.5
E21	86.8	79.1	11	7.4	.5
E22	87.6	78.3	16	7.7	.5
E23	86.3	78.4	13	7.1	
E24	87.1	78.3	18	7	.5
E25	86.6	78.2	13	7.5	.5
average	87.40	79.10	14.00	7.30	.5
N	6	6	6	6	6
STD.DEV.	1.43	1.52	2.53	.27	.05
90% C.1.	1.17	1.25	2.08	.22	.04

TABLE 8.5.3

MIC SITE:

4

and the second second

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT FLYOVER/TARGET IAS=105 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	0
E20	88.6	80.1	NA	NA	NA
E21	86.7	77.9	NA	NA	NA
E22	86.9	77.7	NA	NA	NA
E23	86	77.8	NA	NA	NA
E24	86.8	77.5	NA	NA	NA
E25	NA	NA	NA	NA	NA
average	87.00	78.20			
N	5	5			
STD.DEV.	0.96	1.07			
90% C.1.	0.92	1.02			

TABLE B.6.1

NIC SITE: 5

HELICOPTER:	BOEING-VERTOL CH-47D
TEST DATE:	7-12-83
OPERATION:	1000 FT FLYOVER/TARGET 1AS=135 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
F26	83.8	74.9	16	7.4	.5
F27	84	76.9	15	6	.3
F28	82.7	74.2	17	6.9	.4
F29	82.2	74.1	20	6.2	.3
ave r age	83.20	75.00	17.00	6.60	.4
N	4	4	4	4	4
STD.DEV.	0.87	1.30	2.16	.62	.07
90% C.I.	1.02	1.53	2.54	.74	.09

and through the second of the second of the state of a sub-plant in the process of the transformation of the second s

TABLE B.6.2

MIC SITE: 1

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

- - - -

OPERATION: 1000 FT FLYOVER/TARGET IAS=135 KTS

RUN NO.	SEL(DB)	AL(08) T	(10-DB)	K(A)	Q
F26	84.9	75.2	17	7.9	.5
F27	84.6	76.6	14	7	.5
F28	83.9	75.1	15	7.5	.5
F29	84.1	75.6	18	6.8	.4
AVERAGE	84.40	75.60	16.00	7.30	.5
N	4	4	4	4	4
STD.DEV.	0.46	0.68	1.83	.5	.07
90% C.1.	0.54	0.81	2.15	.59	.08

TABLE B.6.3

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 1000) FT	FLYOVER/TARGET	IAS=135 KTS	
-----------------	------	----------------	-------------	--

RUN NO.	SEL(DB)	AL(DB) T(10-DB)	K(A)	Ð
F26	84	74	NA	NA	NA
F27	84.3	74.9	NA	NA	NA
F28	83	73.6	NA	NA	NA
F29	83.7	73.9	NA	NA	NA
average	83.80	74.10			
N	4	4			
STD.DEV.	0.56	0.56			
90% C.1.	0.66	0.66			

TABLE B.7.1

MIC SITE: 5

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

สระบบสร้าง แล้วแปลมี แล้วแปลมี สร้างสีมีสร้างสามารถสระบบสร้างการ กลามหรือสร้างสามชาวิที่สามชีวส์เสร็จแล้วสร้างส สร้างสามารถสร้างสร้างสามารถสร้างสามารถสร้างสามารถสร้างสามารถสร้างสามารถสามารถสร้างสามชาวิที่สามชีวส์เสร็จไปสามาร

a to a consistent a tractication sold can actual the down and a topological actual actual actual of the consist Actual actual actual actual actual to a second actual actual actual actual actual actual actual actual actual a

1

OPERATION: ICAO TAKEOFF/TARGET IAS=85 KTS

RUN NO.	SEL(08)	AL(DB) T(10-DB)	K(A)	Q
G40	92.2	85.7	9	6.8	.5
641	92.1	85.8	12	5.8	.4
642	92.8	87.1	9	6	.4
643	91.8	85.8	9	6.3	.4
644	95	89.8	6	6.7	.6
645	94	88.4	7	6.6	.5
average	93.00	87.10	8.70	6.40	.5
N	6	6	6	6	6
STD.DEV.	1.26	1.69	2.07	.4	.07
90% C.1.	1.04	1.39	1.70	.33	.06

TABLE 8.7.2

HELICOPTER: BOEING-VERTOL CH-47D TEST DATE: 7-12-83 OPERATION: ICAO TAKEOFF/TARGET IAS=85 KTS

RUN NO.	SEL(DB)	AL(DB) T(10-DB)	K(A)	Q
G40	90.1	83.7	10	6.4	.4
641	90.4	84.2	9	6.5	.5
642	90.9	84.7	9	6.5	.5
643	90.3	83.6	10	6.7	.5
644	91.9	86.2	8	6.3	.5
645	92.2	86.5	7	6.7	.5
average	91.00	84.80	8.80	6.50	.5
N	6	6	6	6	6
STD.DEV.	0.88	1.25	1.17	.17	.03
90% C.I.	0.73	1.03	0.96	.14	.03

TABLE	B	.7	.3
-------	---	----	----

MIC SITE: 4

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: ICAO TAKEOFF/TARGET IAS=85 KTS

RUN NO.	SEL(DB)	AL(DB)	T(19-DB)	K(A)	Q
G40	88.8	81.8	NA	NA	NA
641	88.2	80.7	NA	NA	NA
642	89.2	82	NA	NA	NA
G43	88.2	80.3	NA	NA	NA
G44	89.5	82.5	NA	NA	NA
645	89.8	83.2	NA	NA	NA
average	89.00	81.80			
N	6	6			
STD.DEV.	0.67	1.09			
90% C.I.	0.55	0.90			

TABLE B.8.1

HELICOPTER:	BOEING-VERTOL CH-47D
TEST DATE:	7-12-83
OPERATION:	ICAO APPROACH/TARGET IAS=85 KTS
	MIC SITE: 5

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
H30	100.5	93.5	9	7.3	.6
H31	98.7	91.3	9	7.8	.6
H32	99.6	92.1	12	6.9	.5
H33	99.8	93.7	9	6.4	.5
H34	100.2	93.8	9	6.7	.5
H35	99	82.5	9	17.3	5
average	99.60	91.20	9.50	8.70	1.3
N	6	6	6	6	6
STD.DEV.	0.69	4.35	1.22	4.22	1.82
90% C.1.	0.57	3.58	1.01	3.47	1.49

TABLE B.8.2

MIC SITE: 1

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: ICAO APPROACH/TARGET IAS-85 KTS

RUN NO.	SEL(DB)	AL(08)	T(10-DB)	K(A)	0
H30	99.2	92	10	7.2	.5
H31	98.4	91	13	6.6	.4
H32	99.2	92.2	10	7	.5
H33	99.8	92.4	12	6.9	.5
H34	99.3	92.2	NA	NA	NA
H35	98.7	92	8	7.4	.6
average	99.10	92.00	10.60	7.00	.5
N	5	6	5	5	5
STD.DEV.	0.49	0.50	1.95	.3	.06
90% C.1.	0.40	0.41	1.86	.29	.06

TABLE B.8.3

HELICOPTER:	BOEING-VERTOL CH-47D				
TEST DATE:	7-12-83				
OPERATION:	ICAO APPROACH/TARGET IAS=85 KTS				

RUN NO.	SEL(DB)	AL(09)	T(10-DB)	K(A)	Q
H30	98	89.8	NA	NA	:in
H31	97.6	89.7	NA	NA	NA
H32	98.3	90.3	NA	NA	NA
H33	99.1	98.4	NA	NA	NA
H34	98.5	91.3	NA	NA	NA
H35	97.6	90.1	NA	NA	NA
AVERAGE	98.20	90.30			
N	6	6			
STD.DEV.	0.58	0.58			
90% C.1.	0.48	0.47			

TABLE B.9.1

MIC SITE: 5

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

9 99000 9000 and 11

OPERATION: MILITARY APPROACH/TARGET IAS=70 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
136	100.4	93.1	10	7.3	.5
137	99.2	90.8	NA	NA	NA
138	100.1	94.1	9	6.3	.4
139	99.9	93	10	6.9	.5
average	99.90	92.80	9.70	6.80	.5
N	4	4	3	3	3
STD.DEV.	0.51	1.39	0.58	.51	.05
90% C.1.	0.60	1.64	0.97	.86	.08

TABLE B.9.2

TECT DATE.	7 10 00		
IESI DAIE:	/-12-83		
OPERATION:	MILITARY APPROACH/TARGET	1AS=70	KTS

Q	K(A)	T(10-DB)	AL(DB)	SEL(DB)	RUN NO.
.5	7.1	12	92.3	100	136
.5	7.4	13	90.4	98.6	137
.5	7.4	11	92.9	100.6	138
.5	7.5	12	91.3	99 .4	139
.5	7.30	12.00	91.70	99.70	average
4	4	4	4	4	N
.02	.16	0.82	1.10	0.85	STD.DEV.
.03	.18	0.96	1.30	1.01	90% C.I.
TABLE 8.9.3

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: MILITARY APPROACH/TARGET IAS=70 KTS

			MIC	SITE:	4
RUN NO.	SEL(DB)	AL(DB) 1	r(10-DB)	K(A)	Q
136	98	89.7	NA	NA	NA
137	97.7	88.8	NA	NA	NA
138	98.7	90.6	NA	NA	NA
139	98.5	90	NA	NA	NA
average	98.20	89.80			
N	4	4			
STD.DEV.	0.46	0.75			
90% C.I.	0.54	0.88			

TABLE B.10.1

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: TAKEOFF/TARGET IAS=85 KTS

MIC SITE: 5

RUN NO.	SEL(DB)	AL(DB) T	(10-08)	K(A)	Q
J47	84.2	77.3	16	5.7	.3
J49	86.5	78	14	7.4	.5
J51	87.9	80.5	11	7.1	.5
average	86.20	78.60	13.70	6.80	.4
N	3	3	3	3	3
STD.DEV.	1.87	1.68	2.52	.9	.11
90% C.I.	3.15	2.84	4.24	1.51	.19

TABLE B.10.2

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

متر بن م

OPERATION: TAKEOFF/TARGET IAS=85 KTS

			MIC SITE:			1
RUN NO.	SEL(DB)	AL(08)	T(10-D8)	K(A)	Q	
J47	85.8	77.6	16	6.8	.4	
J49	86.6	79	13	6.8	.4	
J51	87.8	79.8	13	7.2	.5	
AVERAGE	86.70	78.80	14.00	6.90	.4	
N	3	3	3	3	3	
STD.DEV.	1.01	1.11	1.73	.21	.04	
90% C.1.	1.70	1.88	2.92	.36	.06	

TABLE 8.10.3

4

Q

NA NA NA

HELICOPTER	: BOEING-√	ertol Ch	i-47D	
TEST DATE:	7-12-83			
OPERATION:	TAKEOFF/	TARGET 1	AS=85 KTS	ì
			1	AIC SITE:
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)
J47	84.6	75.8	NA	NA
J49	85.7	76.7	NA	NA
J51	86.2	77.1	NA	NA
AVERAGE	85.50	76.50		

0710	7310	1.84	1.4
85.7	76.7	NA	N¥
86.2	77.1	NA	N
85.50	76.50		

N	3	3
STD.DEV.	0.82	0.67
90% C.I.	1.38	1.12

TABLE B.11.1

NO CON

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: APPROACH/TARGET IAS=100 KTS

			MI	C SITE:	5
RUN NO.	SEL(0B)	AL(DB)	T(10-DB)	K(A)	Q
K46	97.3	89.8	12	6.9	.5
K48	97.5	91.4	NA	NA	NA
K50	97.1	91.4	NA	NA	NA
K52	96.5	89.8	NA	NA	NA
average	97.10	90.60	12.00	6.90	.5
N	4	4	1	1	1
STD.DEV.	0.43	0.92			
90% C.I.	0.51	1.09			

TABLE B.11.2

HELICOPTER:	BOEING-VERTOL CH-470
TEST DATE:	7-12-83
OPERATION:	APPROACH/TARGET IAS=100 KTS

NIC SITE: 1

Q	K(A)	T(10-DB)	AL(DB)	SEL(DB)	RUN NO.
.5	7	10	91.1	98.1	K46
NA	NA	9	NA	NA	K48
.4	6.3	9	91	97	K50
.5	6.5	9	91.1	97.3	K52
.5	6.60	9.30	91.10	97.50	average
3	3	4	3	3	N
.03	.37	0.50	0.06	0.57	STD.DEV.
.05	.62	0.59	0.10	0.96	90% C.I.

TABL	E	B	1	1	.3
	-	-	•	-	•••

MIC SITE: 4

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: APPROACH/TARGET IAS=100 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
K46	97.6	90.2	NA	NA	NA
K48	95.9	89	NA	NA	NA
K50	96.4	89.6	NA	NA	NA
K52	96.6	89.5	NA	NA	NA
average	96.60	89.60			
N	4	4			
STD.DEV.	0.71	3.49			
90% C.I.	0.84	0.58			

TABLE 8.12.1

HELICOPTER:	BOEING-VERTOL CH-47D
TEST DATE:	7-12-83

SPERATION: MILITARY TAKEOFF/TARGET IAS=70 KTS

a di kata mangkata kata na di kata

MIC SITE: 5

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
L53 L54 L55	91 90.8 91.6	85 84.8 85.4	9 9 9	6.3 6.3 6.5	.4 .4 .5
average	91.10	85.10	9.00	6.40	.4
N	3	3	3	3	3
STD.DEV.	0.42	0.31	0.00	.12	.01
90% C.I.	0.70	0.52	0.00	.2	.02

TABLE B.12.2

MIC SITE:

and from the second second

HELICOPTER: BOEING-VERTO', CH-47D

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

and the second

ter in the second s

OPERATION: MILITARY TAKEOFF/TARGET IAS=70 KTS

RUN ND.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	0
L53	90.2	83.7	9	6.8	.5
L54	90.3	83.3	11	6.7	.5
L55	90.4	83.5	11	6.6	.4
average	90.30	83.50	10.30	6.70	.5
N	3	3	3	3	3
STD.DEV.	0.10	0.20	1.15	.09	.03
90% C.I.	0.17	0.34	1.95	.16	.05

TABLE B.12.3

				7-12-83	TEST DATE:	٦
	≽ 70 KTS	F/TARGET IAS	TAKEOFI	NILITARY	OPERATION:	(
4	SITE:	MIC				
Q	K(A)	T(10-DB)	AL(DB)	SEL(DB)	RUN NO.	
NA	NA	NA	79.5	88	L53	
NA	NA	NA	81	88.6	L54	
NA	NA	NA	81.5	89.4	L55	
			80.70	88.70	average	
			3	3	N	
			1.04	0.70	STD.DEV.	
			1.75	1.18	90% C.I.	

APPENDIX C

Magnetic Recording Acoustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data along with time averaged, one-third octave sound pressure level information for eight different directivity emission angles. These data were acquired June 6 using the TSC magnetic recording system discussed in Section 5.6.1.

Thirty-two seconds of corrected raw spectral data (64 contiguous 1/2 second data records) have been energy averaged to produce the data tabulated in this appendix. The spectral data presented are "As Measured" for the given emission angles established relative to each microphone location. Also included in the tables are the 360 degree (eight emission angle) average levels, calculated by both arithmetic and energy averaging. The data reduction is further described in Section 6.1. Figure 6.1 (previously shown) provides the reader with a quick reference to the emission angle convention.

The data contained in these tables have been used in analyses presented in Sections 9.2 and 9.7. The reader may cross reference the magnetic recording data of this appendix with direct read static data presented in Appendix D.

Appendix C

"As Measured" 1/3 Octave Noise Data--Static Test are presented.

The key to the table numbering system is as follows:

TABLE NO. C.7-1H.1 (REV.1) BOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

DOT/TSC 6/11/84

AS MEASURED****

HOVER-IN-GROUND-EFFECT

.

			NUVER	(COORD-E	ILLE ETC. I				UPPAOR	1	
	LEVELS	3 @ AC(DUSTIC	EMMIS	ION AND	GLES OF	COEGR	EES)	ove	R 360	DEGREES	
BAND NO.	0	45 SOL	90 JND: PRE	135 ESSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasc	ENERU *	AVE	ARITH ***	Std Dv
1111112772245678901234567890	84.69930397918725492003869948 873779777665512232344222100162	491070749289456838815150462 970146784672639998885644506 888888887672639998885644506	255380036925147699451689831	777038836231220219412838954 888333229339145776775320903 8888888776566666666666666565	701263839858596337558314641 70126383995819144654442108771 887775819144654442108771	950464416852486632476894585 3259070737113566765542198770 787787766566666666666665542198770	011413891336894696955555554 802341207702479108653210023 802341207702479108653210023	87777777776555556666666666655	997822228029164554542200052 987822228029164554542200052 988888877629164554542200052	450386791777039134099685598	8877788887766566666666666655565 8877888877665666666666555565 8887766803344333310988811 8887766566666666555565 888110	830671935744029334810555460
AL DASFL FNL FNLT	75.2 89.2 90.2 91.7	81.4 96.2 97.2 98.9	74.2 93.3 91.5 92.4	77.8 94.0 92.9 93.6	75.7 92.1 90.5 90.9	76.0 89.7 90.2 90.9	68.7 86.3 81.9 82.8	74.4 88.0 89.2 91.0	76.6 92.2 92.2 93.6	76.6	75.4 91.1 90.4 91.5	3.6 3.3 4.3 4.4
		BANDS	14 TO	40 - 9	STANDAR	RD 1/3	OCTAVE	BANDS	25 TO	10KHz		

UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

**** - 32 SECOND AVERGING TIME

the search and free shares and the second second

TABLE NO. C.7-1H.2 (REV.1) BOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

DOT/ISC 6/11/84

AS MEASURED****

SITE: 1H

and the second second

(SOFT) - 150 M. NW

JULY 12,1983

		 -		 -	•			_
 •	1	 			ъ.,	53		J.,
•	h-	ິ	Ł	•		ັ	h	L

- ----

					1 1/ 1				~	IELAGE	1.001000	
	LEVELS	0 ACO	USTIC	EMMISI	ON AND	GLES OF	DEGR	EES)		2 360	DEGREES	_
BAND ND.	0	45 50U	90 ND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	ENERGY *	Y AVE	AR11H ***	Std D∨
11111122022222333333333334 456789012345678901234567890	885424036725445197578630979 885424036725445197578630979	8887777777665445555555555555555555555555	468459922597375263543258177 877776655445555555558177	857877618155103200174153593 231.651.6283269015678888998852 2651.6283269015678888998852 2651.63200174153593	6360514950619778486111108997 68985907912344565555555555555555555555555555555555	017800467768270444519100947 7777766555556665665558 813455556655665558 813455556655665558 813455556655665558 8134555556655558 813455555566555558 8134555555555555555555555555555555555555	408723829819326512139154656	8877776687477747913346657777659 897832064610450030989376413	8777777777766544555555555555555555555555	33444445555434455555555555555555555555	877777777776654455555565654 2735201070058024455666676049 977890741619671372773904527	471970575892895433355814684
AL DASFL PNL FNLT	68.5 85.6 84.0 85.4	72.3 87.7 88.6 90.5	70.5 90.9 86.1 86.7	69.8 85.8 85.2 85.5	66.7 86.5 91.6 82.2	68.2 86.8 83.5 83.7	66.0 82.0 80.9 81.5	69.9 86.2 85.7 87.4	69.4 87.1 85.4 86.7	69 . 4 	69.0 86.4 84.4 85.4	21559

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

**** - 32 SECOND AVERGING TIME

TABLE NO. C.7-1H.3 (REV.1) BOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

SITE: 1H

1

÷.,

(SOFT) - 150 M. NW

JULY 12,1983

DOT/TSC 6/11/84

GROUND	DUF
onconce	

	LEVELS	0 ACC	USTIC	EMMISI	ON AN	GLES OF	(DEGF	EES)	AV OVEF	ERAGE	LEVEL DEGREES	
BAND NO.	0	45 SOU	90 IND PRE	135 SSURE	180 LEVEL	225 d8 re	270 20 mic	315 roPasca	ENERGY	AVE **	ARITH	Std Dv
11111112222222222222233333333333333333	444455554333333444555555555 799914349954455924521126125 5543333333445521126125	44555555543700135835374444556554 8880002105700135835835378020227 8020227	504690415821528348106788405 8608054247846780132544445328 8608054247846780132544445328 86080542478467880132544445328	346912378486089252187516349 3616221068993036576788887642 4993036576788887642	970049223585568649687341718 55557908369901135778888886661 439901135778888886661 439778888886661	385898297640808284035342313 56090320689891367013333331496 66566666689891367013333331496	805032499270025874076314205 417936316087913457801222085 5556666553334444455555544	555555555543333344444445444 252246660154656823267786883 790536813769486669870865428	555555662943809932389800278794 4976920946886891346600004988 888991346600004988	553447839943113585823473689	55555655543333344444444554444 555556555575787892465599902875 555556555433333344444445599902875	898001833712628323008890150 35445544443333333322233322223335
AL DASFL PNL FNLT	62.8 64.9 76.7 78.1	63.2 64.5 77.6 80.2	56.3 72.0 70.8 71.2	59.0 69.8 73.6 74.1	59.1 67.3 73.2 73.5	63.2 71.0 77.4 77.6	61.3 71.7 76.4 76.9	60.2 65.5 75.4 78.0	61.2 69.3 76.3 77.8	61.2	60.7 68.3 75.1 76.2	2.5 3.2 2.4 3.0
				•• •								

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

**** - 32 SECOND AVERGING TIME

TABLE NO. C.7-1H.4 (RFV.1) BOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED****

SITE: 1H

ante an han state of the state

(SOFT) - 150 M. NW

JULY 12,1983

DOT/TSC 6/11/84

HOVER-OUT-OF-GROUND-EFFECT

								~ ~ ~			
LEVELS	0 ACC	USTIC	EMMISI	ON AN	GLES OF	DEGR	EES)	over	360	DEGREES	
0	45 SOL	90 IND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mile	315 roPasca	ENERGY *	' AVE **	ARITH ***	Std Dv
9777897775135542778553300032 650027696618834023943186480 6500276966618834023943186480	8877778888887777777777776666665 703793564187779630211888666696 8877778888887777777777777766666696	778988888787777777766666666665 867674641000705607204746761	888888888887777875860971422415 88888888888777787758232113		4837388180955640128758745347 77777777875875421012	289074123134511893705377063 389303246675221097744466 6675221097744466	8877877776777766776666666675110588776544108377205428928	888888888888777777777777421902 305235648426053668917421902	44455666666677777777777866666655 44455810534560234864930626897 77777777777786666655	887813216882216071115674185268 88888877777777115674185268 888888777777777766666333354	4809395055241434399996904782
79.6 93.3 93.2 94.5	84.3 94.2 98.2 79.5	83.8 97.4 99.1 100.3	84.4 95.7 97.6 98.1		81.4 91.2 94.6 95.4	82.7 92.0 96.2 97.3	81.4 90.4 95.5 96.9	82.8 94.1 96.6 97.8	82.8	82.5 93.5 96.3 97.4	1.8 2.5 2.1 2.1
	LEVELS 0 91.650 770.43.276966 770.775.6966 7777777777777777777777777777777777	LEVELS P ACC 0 45 91.6 87.2 76.5 80.7 70.0 73.2 74.0 77.0 83.2 79.6 77.7 83.3 77.6 85.3 77.9 86.2 75.6 84.3 71.6 81.2 73.1 78.8 75.8 77.9 74.3 79.0 75.8 77.9 74.3 79.0 75.8 77.9 64.3 75.8 75.8 77.9 64.3 79.0 74.3 79.0 72.4 76.3 67.2 70.0 68.3 65.9 71.3 65.4 63.3 68.4 63.3 68.4 63.3 68.9 52.0 56.9 79.6 84.3 93.3 94.5 94.5	LEVELS @ ACOUSTIC 0 45 90 SOUND PRE 91.6 87.2 70.8 76.5 80.7 70.6 70.0 73.2 87.7 74.0 77.0 91.6 83.2 79.6 87.7 79.7 83.3 87.4 77.6 85.3 89.6 77.9 86.2 87.4 75.6 84.3 85.1 71.6 85.3 89.6 77.9 86.2 87.4 75.6 84.3 85.1 71.6 87.2 80.0 75.8 77.9 77.7 74.3 79.0 77.7 74.3 79.0 77.7 74.3 79.0 77.7 74.3 79.0 77.7 65.9 71.3 69.2 65.4 71.5 69.0 63.3 68.4 66.4 63.3 68.4 62.2 </td <td>LEVELS PACOUSTIC EMMISI 0 45 90 135 SOUND PRESSURE 91.6 87.2 70.8 84.8 76.5 80.7 70.6 88.3 70.0 73.2 87.7 82.6 74.0 77.0 91.6 86.0 83.2 79.6 87.7 87.8 77.6 85.3 89.6 85.4 77.7 83.3 87.4 85.5 77.6 85.3 89.6 85.4 77.9 86.2 87.4 84.1 75.6 84.3 85.1 80.6 71.6 81.2 80.0 74.7 75.8 77.9 77.7 79.5 74.3 79.0 77.0 80.7 72.4 76.3 74.5 78.5 67.0 73.2 70.6 73.8 67.2 70.0 73.0 73.6 68.3 72.8 72.7<!--</td--><td>LEVELS @ ACOUSTIC EMMISION AND 0 45 90 135 180 SOUND PRESSURE LEVEL 91.6 87.2 70.8 84.8 - 76.5 80.7 70.6 88.3 - 70.0 73.2 87.7 82.6 - 74.0 77.0 91.6 86.0 - 83.2 79.6 87.7 87.8 - 77.6 85.3 89.6 85.4 - 77.7 83.3 87.4 85.5 - 77.7 86.2 87.4 84.1 - 75.6 84.3 85.1 80.6 - 71.6 81.2 80.0 74.7 - 75.8 77.9 77.7 79.5 - 74.3 79.0 77.0 80.7 - 74.3 79.0 77.7 79.5 - 74.3 79.0 77.7 79.5 - 67.</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF 0 45 90 135 180 225 SOUND PRESSURE LEVEL dB re 91.6 87.2 70.8 84.8 - 81.4 76.5 80.7 70.6 88.3 - 84.8 70.0 73.2 87.7 82.6 - 76.3 74.0 77.0 91.6 86.0 - 80.7 83.2 79.6 87.7 87.8 - 82.3 77.7 83.3 87.4 85.5 - 79.8 77.7 83.3 87.4 85.5 - 79.8 77.9 86.2 87.4 84.1 - 79.1 75.6 84.3 85.1 80.6 - 75.8 71.6 81.2 80.0 74.7 - 75.5 74.3 79.0 77.7 79.5 - 75.5 74.3 79.0 77.7 79.5 - <td< td=""><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGR04590135180225270SOUND PRESSURE LEVEL dB re 20 mile91.687.270.884.8-81.483.276.580.770.688.3-84.878.870.073.287.782.6-76.379.974.077.091.686.0-80.783.083.279.687.787.8-79.883.477.685.389.685.4-79.883.477.685.389.685.4-79.883.477.686.287.484.1-79.883.477.686.287.484.1-79.883.477.681.280.074.7-75.576.475.877.687.680.779.779.5-75.877.680.7-75.576.574.379.077.779.5-75.574.379.077.778.5-74.575.877.687.277.779.5-76.677.173.270.673.8-71.272.967.270.073.073.6-71.272.967.270.073.073.6-71.272.965.971.369.269.7-68.767.563.1<td< td=""><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) 0 45 90 135 180 225 270 315 SOUND PRESSURE LEVEL dB re 20 microPasca 91.6 87.2 70.8 84.8 - 81.4 83.2 85.1 70.0 73.2 87.7 82.6 - 76.3 79.9 76.0 74.0 77.0 91.6 86.0 - 80.7 83.0 78.5 83.2 79.6 87.7 87.8 - 82.3 80.7 80.8 77.6 85.3 89.6 85.4 - 79.8 83.4 75.8 77.6 85.3 89.6 85.4 - 79.8 83.1 77.7 75.6 84.3 85.1 80.6 - 75.8 75.3 74.6 71.6 81.2 80.0 72.0 - 73.0 72.1 69.5 73.1 78.8 78.0 70.8 - 75.5 76.4 72.4 75.8 77.6 80.0 74.7 - 75.5 76.4 72.4 75.8 77.9 77.7 85.5 - 74.5 75.1 71.8 67.0 73.2 70.6 73.6 73.6 - 71.2 72.9 69.3 67.2 70.0 73.0 73.6 - 71.2 72.9 69.7 65.3 1 68.4 66.4 67.1 - 65.8 67.5 66.5 63.1 68.0 65.7 65.4 - 64.7 67.5 68.4 60.8 66.1 63.4 63.2 - 62.4 64.7 66.2 60.4 66.5 62.7 61.4 - 60.3 64.0 66.9 63.8 69.5 65.6 61.1 - 61.4 66.6 71.2 52.0 56.9 54.1 53.5 - 52.7 56.3 57.8 79.6 84.3 83.8 84.4 - 81.4 82.7 81.4 93.3 94.2 97.4 95.7 - 91.2 92.0 90.4 93.2 98.2 99.1 97.6 - 94.6 96.2 95.5 94.5 99.5 100.3 98.1 - 95.4 97.3 96.9</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER04590135180225270315ENERGYSOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.370.073.287.782.6-76.379.976.081.574.077.091.686.0-80.783.078.982.183.074.077.091.685.5-79.883.475.883.584.879.783.387.485.5-79.883.475.883.577.685.389.685.4-79.883.475.883.577.686.287.484.1-79.883.475.883.577.686.387.485.180.6-75.875.374.680.877.686.387.484.1-79.883.475.883.677.886.287.484.1-79.883.177.783.475.687.480.072.0-73.072.169.576.475.877.777.779.5-75.576.573.177.074.379.077.080.7-74.573.174.077.572.474.374.574.575.171.875.367.073.27</td><td>LEVELS P ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 36004590135180225270315ENERGY AVE ***SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.463.285.186.341.676.580.770.688.3-84.878.882.183.043.670.073.287.782.6-76.379.976.081.545.983.279.687.787.8-82.380.778.883.555.083.279.687.787.8-82.380.780.884.358.177.685.387.485.5-79.883.177.784.665.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.573.178.678.878.670.072.574.475.264.665.573.877.680.074.7-75.576.475.276.465.773.877.680.074.7-75.576.477.072.264.770.073.877.680.074.7-75.576.477.5</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 360 DEGREES)04590135180225270315ENERGY AVE ****AKITH ****SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.341.683.476.580.770.688.3-84.878.882.183.043.690.374.077.091.686.0-76.379.976.081.543.6978.083.277.687.787.882.6-76.379.976.081.543.6978.077.783.387.485.5-77.883.477.784.665.582.677.783.387.485.5-77.883.467.381.875.664.385.180.672.180.277.783.467.381.875.684.385.180.672.169.576.465.574.275.877.680.072.0-75.576.472.475.774.377.072.476.580.074.779.5-75.576.472.475.774.774.775.877.779.5-75.576.472.475.774.377.072.476.577.079.5-75.576.472.476.672.2</td></td<></td></td<></td></td>	LEVELS PACOUSTIC EMMISI 0 45 90 135 SOUND PRESSURE 91.6 87.2 70.8 84.8 76.5 80.7 70.6 88.3 70.0 73.2 87.7 82.6 74.0 77.0 91.6 86.0 83.2 79.6 87.7 87.8 77.6 85.3 89.6 85.4 77.7 83.3 87.4 85.5 77.6 85.3 89.6 85.4 77.9 86.2 87.4 84.1 75.6 84.3 85.1 80.6 71.6 81.2 80.0 74.7 75.8 77.9 77.7 79.5 74.3 79.0 77.0 80.7 72.4 76.3 74.5 78.5 67.0 73.2 70.6 73.8 67.2 70.0 73.0 73.6 68.3 72.8 72.7 </td <td>LEVELS @ ACOUSTIC EMMISION AND 0 45 90 135 180 SOUND PRESSURE LEVEL 91.6 87.2 70.8 84.8 - 76.5 80.7 70.6 88.3 - 70.0 73.2 87.7 82.6 - 74.0 77.0 91.6 86.0 - 83.2 79.6 87.7 87.8 - 77.6 85.3 89.6 85.4 - 77.7 83.3 87.4 85.5 - 77.7 86.2 87.4 84.1 - 75.6 84.3 85.1 80.6 - 71.6 81.2 80.0 74.7 - 75.8 77.9 77.7 79.5 - 74.3 79.0 77.0 80.7 - 74.3 79.0 77.7 79.5 - 74.3 79.0 77.7 79.5 - 67.</td> <td>LEVELS @ ACOUSTIC EMMISION ANGLES OF 0 45 90 135 180 225 SOUND PRESSURE LEVEL dB re 91.6 87.2 70.8 84.8 - 81.4 76.5 80.7 70.6 88.3 - 84.8 70.0 73.2 87.7 82.6 - 76.3 74.0 77.0 91.6 86.0 - 80.7 83.2 79.6 87.7 87.8 - 82.3 77.7 83.3 87.4 85.5 - 79.8 77.7 83.3 87.4 85.5 - 79.8 77.9 86.2 87.4 84.1 - 79.1 75.6 84.3 85.1 80.6 - 75.8 71.6 81.2 80.0 74.7 - 75.5 74.3 79.0 77.7 79.5 - 75.5 74.3 79.0 77.7 79.5 - <td< td=""><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGR04590135180225270SOUND PRESSURE LEVEL dB re 20 mile91.687.270.884.8-81.483.276.580.770.688.3-84.878.870.073.287.782.6-76.379.974.077.091.686.0-80.783.083.279.687.787.8-79.883.477.685.389.685.4-79.883.477.685.389.685.4-79.883.477.686.287.484.1-79.883.477.686.287.484.1-79.883.477.681.280.074.7-75.576.475.877.687.680.779.779.5-75.877.680.7-75.576.574.379.077.779.5-75.574.379.077.778.5-74.575.877.687.277.779.5-76.677.173.270.673.8-71.272.967.270.073.073.6-71.272.967.270.073.073.6-71.272.965.971.369.269.7-68.767.563.1<td< td=""><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) 0 45 90 135 180 225 270 315 SOUND PRESSURE LEVEL dB re 20 microPasca 91.6 87.2 70.8 84.8 - 81.4 83.2 85.1 70.0 73.2 87.7 82.6 - 76.3 79.9 76.0 74.0 77.0 91.6 86.0 - 80.7 83.0 78.5 83.2 79.6 87.7 87.8 - 82.3 80.7 80.8 77.6 85.3 89.6 85.4 - 79.8 83.4 75.8 77.6 85.3 89.6 85.4 - 79.8 83.1 77.7 75.6 84.3 85.1 80.6 - 75.8 75.3 74.6 71.6 81.2 80.0 72.0 - 73.0 72.1 69.5 73.1 78.8 78.0 70.8 - 75.5 76.4 72.4 75.8 77.6 80.0 74.7 - 75.5 76.4 72.4 75.8 77.9 77.7 85.5 - 74.5 75.1 71.8 67.0 73.2 70.6 73.6 73.6 - 71.2 72.9 69.3 67.2 70.0 73.0 73.6 - 71.2 72.9 69.7 65.3 1 68.4 66.4 67.1 - 65.8 67.5 66.5 63.1 68.0 65.7 65.4 - 64.7 67.5 68.4 60.8 66.1 63.4 63.2 - 62.4 64.7 66.2 60.4 66.5 62.7 61.4 - 60.3 64.0 66.9 63.8 69.5 65.6 61.1 - 61.4 66.6 71.2 52.0 56.9 54.1 53.5 - 52.7 56.3 57.8 79.6 84.3 83.8 84.4 - 81.4 82.7 81.4 93.3 94.2 97.4 95.7 - 91.2 92.0 90.4 93.2 98.2 99.1 97.6 - 94.6 96.2 95.5 94.5 99.5 100.3 98.1 - 95.4 97.3 96.9</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER04590135180225270315ENERGYSOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.370.073.287.782.6-76.379.976.081.574.077.091.686.0-80.783.078.982.183.074.077.091.685.5-79.883.475.883.584.879.783.387.485.5-79.883.475.883.577.685.389.685.4-79.883.475.883.577.686.287.484.1-79.883.475.883.577.686.387.485.180.6-75.875.374.680.877.686.387.484.1-79.883.475.883.677.886.287.484.1-79.883.177.783.475.687.480.072.0-73.072.169.576.475.877.777.779.5-75.576.573.177.074.379.077.080.7-74.573.174.077.572.474.374.574.575.171.875.367.073.27</td><td>LEVELS P ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 36004590135180225270315ENERGY AVE ***SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.463.285.186.341.676.580.770.688.3-84.878.882.183.043.670.073.287.782.6-76.379.976.081.545.983.279.687.787.8-82.380.778.883.555.083.279.687.787.8-82.380.780.884.358.177.685.387.485.5-79.883.177.784.665.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.573.178.678.878.670.072.574.475.264.665.573.877.680.074.7-75.576.475.276.465.773.877.680.074.7-75.576.477.072.264.770.073.877.680.074.7-75.576.477.5</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 360 DEGREES)04590135180225270315ENERGY AVE ****AKITH ****SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.341.683.476.580.770.688.3-84.878.882.183.043.690.374.077.091.686.0-76.379.976.081.543.6978.083.277.687.787.882.6-76.379.976.081.543.6978.077.783.387.485.5-77.883.477.784.665.582.677.783.387.485.5-77.883.467.381.875.664.385.180.672.180.277.783.467.381.875.684.385.180.672.169.576.465.574.275.877.680.072.0-75.576.472.475.774.377.072.476.580.074.779.5-75.576.472.475.774.774.775.877.779.5-75.576.472.475.774.377.072.476.577.079.5-75.576.472.476.672.2</td></td<></td></td<></td>	LEVELS @ ACOUSTIC EMMISION AND 0 45 90 135 180 SOUND PRESSURE LEVEL 91.6 87.2 70.8 84.8 - 76.5 80.7 70.6 88.3 - 70.0 73.2 87.7 82.6 - 74.0 77.0 91.6 86.0 - 83.2 79.6 87.7 87.8 - 77.6 85.3 89.6 85.4 - 77.7 83.3 87.4 85.5 - 77.7 86.2 87.4 84.1 - 75.6 84.3 85.1 80.6 - 71.6 81.2 80.0 74.7 - 75.8 77.9 77.7 79.5 - 74.3 79.0 77.0 80.7 - 74.3 79.0 77.7 79.5 - 74.3 79.0 77.7 79.5 - 67.	LEVELS @ ACOUSTIC EMMISION ANGLES OF 0 45 90 135 180 225 SOUND PRESSURE LEVEL dB re 91.6 87.2 70.8 84.8 - 81.4 76.5 80.7 70.6 88.3 - 84.8 70.0 73.2 87.7 82.6 - 76.3 74.0 77.0 91.6 86.0 - 80.7 83.2 79.6 87.7 87.8 - 82.3 77.7 83.3 87.4 85.5 - 79.8 77.7 83.3 87.4 85.5 - 79.8 77.9 86.2 87.4 84.1 - 79.1 75.6 84.3 85.1 80.6 - 75.8 71.6 81.2 80.0 74.7 - 75.5 74.3 79.0 77.7 79.5 - 75.5 74.3 79.0 77.7 79.5 - <td< td=""><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGR04590135180225270SOUND PRESSURE LEVEL dB re 20 mile91.687.270.884.8-81.483.276.580.770.688.3-84.878.870.073.287.782.6-76.379.974.077.091.686.0-80.783.083.279.687.787.8-79.883.477.685.389.685.4-79.883.477.685.389.685.4-79.883.477.686.287.484.1-79.883.477.686.287.484.1-79.883.477.681.280.074.7-75.576.475.877.687.680.779.779.5-75.877.680.7-75.576.574.379.077.779.5-75.574.379.077.778.5-74.575.877.687.277.779.5-76.677.173.270.673.8-71.272.967.270.073.073.6-71.272.967.270.073.073.6-71.272.965.971.369.269.7-68.767.563.1<td< td=""><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) 0 45 90 135 180 225 270 315 SOUND PRESSURE LEVEL dB re 20 microPasca 91.6 87.2 70.8 84.8 - 81.4 83.2 85.1 70.0 73.2 87.7 82.6 - 76.3 79.9 76.0 74.0 77.0 91.6 86.0 - 80.7 83.0 78.5 83.2 79.6 87.7 87.8 - 82.3 80.7 80.8 77.6 85.3 89.6 85.4 - 79.8 83.4 75.8 77.6 85.3 89.6 85.4 - 79.8 83.1 77.7 75.6 84.3 85.1 80.6 - 75.8 75.3 74.6 71.6 81.2 80.0 72.0 - 73.0 72.1 69.5 73.1 78.8 78.0 70.8 - 75.5 76.4 72.4 75.8 77.6 80.0 74.7 - 75.5 76.4 72.4 75.8 77.9 77.7 85.5 - 74.5 75.1 71.8 67.0 73.2 70.6 73.6 73.6 - 71.2 72.9 69.3 67.2 70.0 73.0 73.6 - 71.2 72.9 69.7 65.3 1 68.4 66.4 67.1 - 65.8 67.5 66.5 63.1 68.0 65.7 65.4 - 64.7 67.5 68.4 60.8 66.1 63.4 63.2 - 62.4 64.7 66.2 60.4 66.5 62.7 61.4 - 60.3 64.0 66.9 63.8 69.5 65.6 61.1 - 61.4 66.6 71.2 52.0 56.9 54.1 53.5 - 52.7 56.3 57.8 79.6 84.3 83.8 84.4 - 81.4 82.7 81.4 93.3 94.2 97.4 95.7 - 91.2 92.0 90.4 93.2 98.2 99.1 97.6 - 94.6 96.2 95.5 94.5 99.5 100.3 98.1 - 95.4 97.3 96.9</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER04590135180225270315ENERGYSOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.370.073.287.782.6-76.379.976.081.574.077.091.686.0-80.783.078.982.183.074.077.091.685.5-79.883.475.883.584.879.783.387.485.5-79.883.475.883.577.685.389.685.4-79.883.475.883.577.686.287.484.1-79.883.475.883.577.686.387.485.180.6-75.875.374.680.877.686.387.484.1-79.883.475.883.677.886.287.484.1-79.883.177.783.475.687.480.072.0-73.072.169.576.475.877.777.779.5-75.576.573.177.074.379.077.080.7-74.573.174.077.572.474.374.574.575.171.875.367.073.27</td><td>LEVELS P ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 36004590135180225270315ENERGY AVE ***SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.463.285.186.341.676.580.770.688.3-84.878.882.183.043.670.073.287.782.6-76.379.976.081.545.983.279.687.787.8-82.380.778.883.555.083.279.687.787.8-82.380.780.884.358.177.685.387.485.5-79.883.177.784.665.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.573.178.678.878.670.072.574.475.264.665.573.877.680.074.7-75.576.475.276.465.773.877.680.074.7-75.576.477.072.264.770.073.877.680.074.7-75.576.477.5</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 360 DEGREES)04590135180225270315ENERGY AVE ****AKITH ****SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.341.683.476.580.770.688.3-84.878.882.183.043.690.374.077.091.686.0-76.379.976.081.543.6978.083.277.687.787.882.6-76.379.976.081.543.6978.077.783.387.485.5-77.883.477.784.665.582.677.783.387.485.5-77.883.467.381.875.664.385.180.672.180.277.783.467.381.875.684.385.180.672.169.576.465.574.275.877.680.072.0-75.576.472.475.774.377.072.476.580.074.779.5-75.576.472.475.774.774.775.877.779.5-75.576.472.475.774.377.072.476.577.079.5-75.576.472.476.672.2</td></td<></td></td<>	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGR04590135180225270SOUND PRESSURE LEVEL dB re 20 mile91.687.270.884.8-81.483.276.580.770.688.3-84.878.870.073.287.782.6-76.379.974.077.091.686.0-80.783.083.279.687.787.8-79.883.477.685.389.685.4-79.883.477.685.389.685.4-79.883.477.686.287.484.1-79.883.477.686.287.484.1-79.883.477.681.280.074.7-75.576.475.877.687.680.779.779.5-75.877.680.7-75.576.574.379.077.779.5-75.574.379.077.778.5-74.575.877.687.277.779.5-76.677.173.270.673.8-71.272.967.270.073.073.6-71.272.967.270.073.073.6-71.272.965.971.369.269.7-68.767.563.1 <td< td=""><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) 0 45 90 135 180 225 270 315 SOUND PRESSURE LEVEL dB re 20 microPasca 91.6 87.2 70.8 84.8 - 81.4 83.2 85.1 70.0 73.2 87.7 82.6 - 76.3 79.9 76.0 74.0 77.0 91.6 86.0 - 80.7 83.0 78.5 83.2 79.6 87.7 87.8 - 82.3 80.7 80.8 77.6 85.3 89.6 85.4 - 79.8 83.4 75.8 77.6 85.3 89.6 85.4 - 79.8 83.1 77.7 75.6 84.3 85.1 80.6 - 75.8 75.3 74.6 71.6 81.2 80.0 72.0 - 73.0 72.1 69.5 73.1 78.8 78.0 70.8 - 75.5 76.4 72.4 75.8 77.6 80.0 74.7 - 75.5 76.4 72.4 75.8 77.9 77.7 85.5 - 74.5 75.1 71.8 67.0 73.2 70.6 73.6 73.6 - 71.2 72.9 69.3 67.2 70.0 73.0 73.6 - 71.2 72.9 69.7 65.3 1 68.4 66.4 67.1 - 65.8 67.5 66.5 63.1 68.0 65.7 65.4 - 64.7 67.5 68.4 60.8 66.1 63.4 63.2 - 62.4 64.7 66.2 60.4 66.5 62.7 61.4 - 60.3 64.0 66.9 63.8 69.5 65.6 61.1 - 61.4 66.6 71.2 52.0 56.9 54.1 53.5 - 52.7 56.3 57.8 79.6 84.3 83.8 84.4 - 81.4 82.7 81.4 93.3 94.2 97.4 95.7 - 91.2 92.0 90.4 93.2 98.2 99.1 97.6 - 94.6 96.2 95.5 94.5 99.5 100.3 98.1 - 95.4 97.3 96.9</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER04590135180225270315ENERGYSOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.370.073.287.782.6-76.379.976.081.574.077.091.686.0-80.783.078.982.183.074.077.091.685.5-79.883.475.883.584.879.783.387.485.5-79.883.475.883.577.685.389.685.4-79.883.475.883.577.686.287.484.1-79.883.475.883.577.686.387.485.180.6-75.875.374.680.877.686.387.484.1-79.883.475.883.677.886.287.484.1-79.883.177.783.475.687.480.072.0-73.072.169.576.475.877.777.779.5-75.576.573.177.074.379.077.080.7-74.573.174.077.572.474.374.574.575.171.875.367.073.27</td><td>LEVELS P ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 36004590135180225270315ENERGY AVE ***SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.463.285.186.341.676.580.770.688.3-84.878.882.183.043.670.073.287.782.6-76.379.976.081.545.983.279.687.787.8-82.380.778.883.555.083.279.687.787.8-82.380.780.884.358.177.685.387.485.5-79.883.177.784.665.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.573.178.678.878.670.072.574.475.264.665.573.877.680.074.7-75.576.475.276.465.773.877.680.074.7-75.576.477.072.264.770.073.877.680.074.7-75.576.477.5</td><td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 360 DEGREES)04590135180225270315ENERGY AVE ****AKITH ****SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.341.683.476.580.770.688.3-84.878.882.183.043.690.374.077.091.686.0-76.379.976.081.543.6978.083.277.687.787.882.6-76.379.976.081.543.6978.077.783.387.485.5-77.883.477.784.665.582.677.783.387.485.5-77.883.467.381.875.664.385.180.672.180.277.783.467.381.875.684.385.180.672.169.576.465.574.275.877.680.072.0-75.576.472.475.774.377.072.476.580.074.779.5-75.576.472.475.774.774.775.877.779.5-75.576.472.475.774.377.072.476.577.079.5-75.576.472.476.672.2</td></td<>	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) 0 45 90 135 180 225 270 315 SOUND PRESSURE LEVEL dB re 20 microPasca 91.6 87.2 70.8 84.8 - 81.4 83.2 85.1 70.0 73.2 87.7 82.6 - 76.3 79.9 76.0 74.0 77.0 91.6 86.0 - 80.7 83.0 78.5 83.2 79.6 87.7 87.8 - 82.3 80.7 80.8 77.6 85.3 89.6 85.4 - 79.8 83.4 75.8 77.6 85.3 89.6 85.4 - 79.8 83.1 77.7 75.6 84.3 85.1 80.6 - 75.8 75.3 74.6 71.6 81.2 80.0 72.0 - 73.0 72.1 69.5 73.1 78.8 78.0 70.8 - 75.5 76.4 72.4 75.8 77.6 80.0 74.7 - 75.5 76.4 72.4 75.8 77.9 77.7 85.5 - 74.5 75.1 71.8 67.0 73.2 70.6 73.6 73.6 - 71.2 72.9 69.3 67.2 70.0 73.0 73.6 - 71.2 72.9 69.7 65.3 1 68.4 66.4 67.1 - 65.8 67.5 66.5 63.1 68.0 65.7 65.4 - 64.7 67.5 68.4 60.8 66.1 63.4 63.2 - 62.4 64.7 66.2 60.4 66.5 62.7 61.4 - 60.3 64.0 66.9 63.8 69.5 65.6 61.1 - 61.4 66.6 71.2 52.0 56.9 54.1 53.5 - 52.7 56.3 57.8 79.6 84.3 83.8 84.4 - 81.4 82.7 81.4 93.3 94.2 97.4 95.7 - 91.2 92.0 90.4 93.2 98.2 99.1 97.6 - 94.6 96.2 95.5 94.5 99.5 100.3 98.1 - 95.4 97.3 96.9	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER04590135180225270315ENERGYSOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.370.073.287.782.6-76.379.976.081.574.077.091.686.0-80.783.078.982.183.074.077.091.685.5-79.883.475.883.584.879.783.387.485.5-79.883.475.883.577.685.389.685.4-79.883.475.883.577.686.287.484.1-79.883.475.883.577.686.387.485.180.6-75.875.374.680.877.686.387.484.1-79.883.475.883.677.886.287.484.1-79.883.177.783.475.687.480.072.0-73.072.169.576.475.877.777.779.5-75.576.573.177.074.379.077.080.7-74.573.174.077.572.474.374.574.575.171.875.367.073.27	LEVELS P ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 36004590135180225270315ENERGY AVE ***SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.463.285.186.341.676.580.770.688.3-84.878.882.183.043.670.073.287.782.6-76.379.976.081.545.983.279.687.787.8-82.380.778.883.555.083.279.687.787.8-82.380.780.884.358.177.685.387.485.5-79.883.177.784.665.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.577.986.287.484.1-79.180.277.783.465.573.178.678.878.670.072.574.475.264.665.573.877.680.074.7-75.576.475.276.465.773.877.680.074.7-75.576.477.072.264.770.073.877.680.074.7-75.576.477.5	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)OVER 360 DEGREES)04590135180225270315ENERGY AVE ****AKITH ****SOUND PRESSURE LEVEL dB re 20 microPascal91.687.270.884.8-81.483.285.186.341.683.476.580.770.688.3-84.878.882.183.043.690.374.077.091.686.0-76.379.976.081.543.6978.083.277.687.787.882.6-76.379.976.081.543.6978.077.783.387.485.5-77.883.477.784.665.582.677.783.387.485.5-77.883.467.381.875.664.385.180.672.180.277.783.467.381.875.684.385.180.672.169.576.465.574.275.877.680.072.0-75.576.472.475.774.377.072.476.580.074.779.5-75.576.472.475.774.774.775.877.779.5-75.576.472.475.774.377.072.476.577.079.5-75.576.472.476.672.2

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

* - UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES ** - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - INWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES **** - 32 SECOND AVERGING TIME

TABLE NO. C.7-2H.1 (REV.1) BOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STAFIC TESTS AS MEASURED****

DOT/ISC 6/11/84

(SOFT) - 150 M. WEST SITE: 2 JULY 12,1983

HOVER-IN-GROUND-EFFECT

			nuver		0000-0	TECI						
	LEVELS	0 ACO	USTIC	EMMIS	ON AN	GLES OF	(DEGR	EES	OVE	R 360	DEGREES	
BAND NO.	0	45 SOU	90 ND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	ENERG	Y AVE **	AKITH ***	Std Dv
111111222222222333333333345678901234567890	907464606336257857957044518 907464606336257857957044518	99888888996699642018404928 859888888888966222221018404928	4362038398856942511118674079 484852315677801210863209912	2075550000664092951093655325 812575753671257777765319890	98789562191794559298216632234 98789888877666666655555686555568	8880237919577780457666652197689 88888878777556457666652197689 8988887877780457666652197689	273607425987540697720047200 8883430306779157864221087791	8778877776555566666666666659788777889490152816925334112283	88888888887666653209051 888888888887666653209051	44455666665556666666666666666 476381576154854667764419948 476381576154854667764419948	8878888876556666666666555574 8879131207998034544331086699 888888876556666666555554	3534454556655644455655675
AL DASFL PNL FNLT	75.6 93.3 90.6 92.1	83.5 98.3 99.0 100.9	72.8 93.4 89.8 90.8	79.0 96.5 95.0 95.8	76.5 94.7 92.1 92.9	76.3 92.6 90.9 91.8	66.0 89.4 80.5 81.3	75.9 91.8 91.0 92.8	77.8 94.6 93.5 95.1	77.8	75.7 93.7 91.1 92.3	5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

-- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES -- UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES × ж× ***

**** - 32 SECOND AVERGING TIME

TABLE NO. C.7-2H.2 (REV.1) LOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

00T/TGC 6/12/84

AS MEASURED****

<u> </u>	CORTI	-	150	M	LUCCT
A.	(3051)	-	6.30	11.	WCOL

JULY 12,1983

FLIGHT IDLE

SITE:

								•		1.771.1771	
LEVELS	@ ACO	USTIC	EMMISI		GLES OF	(DEGR	EES)	0VE	R 360	DEGREES	
0	45 SOU	90 ND FRE	135 SSURE	180 LEVEI	225 d8 re	270 20 mic	315 roPasca	ENERG *	Y AVE **	ARITH ***	Std Dv
88777777665445555555555555566237 75725011942791455677776666237 570631733475782555555555555674	887776677665555555555555555555555555555	97887777665445555555555559 98877776654455555555555555555555555555555	87787777765455555555555555555 696083430549134567908998850 696083430549134567908998850 69608347658873269917519434337	104450764884003032713039242 76767344154025688999988756539 787777776555555555555555555555555555555	182248449194343341730284502 88787777655555590111109073 6590314449194343341730284502	8877777776654455555555555555 1168636393179235566766765717 10896427968539020348220495	8878767665974692345877888760 7.48153182298873405066997542 	360926280199728912730402879 839142520428034567888887249 839142520428034567888887249	444555555544455555555555555654 3441006666342502567999997237 	333790157645373246286068944 7289524293280245556877876049	342412311222220202020202021411
69.4 90.4 85.0 86.3	69.3 91.3 86.0 87.9	69.6 94.8 87.1 88.0	70.6 89.4 86.1 86.4	70.3 90.7 85.3 85.7	72.3 90.4 87.4 87.6	68.8 87.4 84.4 85.0	71.1 89.9 87.2 88.9	70.3 91.0 86.2 87.3	70.3	70.2 90.5 96.1 87.0	1.1 2.1 1.1 1.3
	LEVELS 0 8877250117334257825555555555555555555555555555555555	LEVELS @ ACO 0 45 3000 87.5 89.0 85.7 85.0 77.0 78.1 72.6 79.4 75.3 76.0 70.1 69.9 71.7 71.0 71.7 71.0 70.1 69.9 71.7 71.2 51.8 53.8 47.5 50.4 49.7 51.2 51.8 51.8 54.2 53.8 54.2 53.5 51.2 55.5 51.2 55.5 51.2	LEVELS@ ACOUSTIC0 45 90 SOUND PRE87.5 89.0 92.9 85.7 85.0 73.8 77.078.1 83.5 72.6 79.4 88.0 75.376.075.170.1 69.9 75.971.771.079.971.370.972.169.3 69.9 68.664.464.160.752.253.850.347.550.447.749.751.248.651.851.850.754.253.551.255.551.253.457.753.556.157.753.556.157.253.857.156.954.058.156.954.457.456.155.156.262.764.358.153.654.453.347.947.949.069.469.369.690.491.394.885.086.087.186.387.988.0	LEVELS @ ACDUSTIC EMMISI0 45 90 135 SOUND PRESSURE87.5 89.0 92.9 86.8 85.7 85.0 73.8 79.2 77.0 78.1 83.5 76.3 72.6 79.4 88.0 80.3 75.3 76.0 75.1 78.4 70.1 69.9 75.9 73.7 71.7 71.0 79.9 74.6 74.3 70.9 72.1 73.5 69.3 69.9 68.6 70.8 64.4 64.1 60.7 65.8 52.2 53.8 50.3 54.7 47.5 50.4 47.7 49.3 54.7 51.2 53.4 55.9 55.5 51.2 53.4 55.9 55.5 51.0 54.0 56.1 57.7 53.5 56.4 60.1 57.7 53.5 56.4 60.1 57.2 53.8 57.1 58.9 55.5 51.0 58.1 59.4 56.9 54.0 58.1 59.4 56.9 54.0 58.1 59.3 56.1 55.1 56.2 58.4 62.7 66.3 58.1 58.3 53.6 54.4 53.3 55.3 47.9 47.9 49.0 50.7 69.4 69.3 69.6 70.6 70.4 91.3 94.8 89.4 85.0 86.0 <td>LEVELS @ ACOUSTIC EMMISION AND04590135180SOUND PRESSURE LEVEL$87.5$$89.0$$92.9$$86.8$$37.1$$85.7$$85.0$$73.8$$79.2$$86.0$$77.0$$78.1$$83.5$$76.3$$77.6$$72.6$$79.4$$88.0$$80.3$$76.4$$75.3$$76.0$$75.1$$78.4$$77.5$$70.1$$69.9$$75.9$$73.7$$73.0$$71.7$$71.0$$79.9$$74.6$$74.7$$71.3$$70.9$$72.1$$73.5$$74.6$$69.3$$69.9$$68.6$$70.8$$71.4$$64.4$$64.1$$60.7$$65.8$$65.8$$52.2$$53.8$$50.3$$54.7$$54.8$$47.5$$50.4$$47.7$$47.3$$50.4$$49.7$$51.2$$53.4$$55.9$$56.0$$54.7$$53.6$$55.9$$59.7$$55.5$$51.2$$53.4$$55.9$$59.7$$57.7$$53.5$$56.4$$60.1$$59.1$$57.2$$53.5$$56.4$$59.3$$57.7$$57.7$$53.5$$56.4$$50.1$$59.7$$57.7$$53.5$$56.4$$59.3$$57.3$$56.9$$54.0$$58.1$$59.4$$59.3$$56.9$$54.0$$58.1$$59.3$$56.2$$57.7$$53.5$$56.2$$58.4$$50.7$$57.7$$53.5$$56$</td> <td>LEVELS @ ACOUSTIC EMMISION ANGLES OF 0 45 90 135 180 225 SOUND PRESSURE LEVEL dB re 87.5 89.0 92.9 86.8 37.1 86.1 85.7 85.0 73.8 79.2 36.0 85.8 77.0 78.1 83.5 76.3 77.6 79.2 72.6 79.4 88.0 80.3 76.4 80.2 75.3 76.0 75.1 78.4 77.5 73.4 70.1 69.9 75.9 73.7 73.0 71.8 71.7 71.0 79.9 74.6 74.7 74.4 71.3 70.9 72.1 73.5 74.6 74.4 69.3 69.9 68.6 70.8 71.4 71.9 64.4 64.1 60.7 65.8 65.8 65.1 52.2 53.8 50.3 54.7 54.8 53.9 47.5 50.4 47.7 49.3 50.4 50.4 49.7 51.2 48.6 51.2 52.0 53.3 51.8 51.8 50.7 53.6 55.0 56.4 54.7 53.5 51.0 54.0 55.1 58.3 59.4 55.5 51.0 54.0 56.1 57.7 59.2 60.1 57.7 53.5 56.4 60.1 58.3 59.4 56.3 51.9 56.1 57.7 59.2 60.1 57.7 53.5 56.4 60.1 59.1 61.3 57.2 53.8 57.1 58.9 58.0 59.3 55.5 51.0 54.4 55.9 58.0 59.3 57.7 53.5 56.4 60.1 59.1 61.3 57.2 53.8 57.1 58.9 58.3 61.0 56.9 54.0 58.1 59.4 58.3 60.10 56.9 54.0 58.1 59.4 58.3 57.3 60.8 56.1 55.1 56.2 58.4 55.9 59.4 62.7 66.3 58.1 58.3 55.9 59.4 62.7 66.3 58.1 58.3 56.2 60.5 53.6 54.4 53.3 55.3 53.4 57.0 47.9 47.9 49.0 50.7 49.2 53.2 69.4 69.3 69.6 70.6 70.3 72.3 69.4 69.3 69.6 70.6 70.3 72.3 69.4 69.3 69.6 70.6 70.7 90.4 85.0 86.0 87.1 86.1 85.3 87.4 85.0 86.0 87.1 86.1 85.3 87.4 86.3 07.9 88.0 86.4 85.7 87.6</td> <td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGR 0 45 90 135 180 225 270 SOUND PRESSURE LEVEL dB re 20 mic 87.5 89.0 92.9 86.8 87.1 86.1 81.5 85.7 85.0 73.8 79.2 86.0 85.8 81.3 77.0 78.1 83.5 76.3 77.6 79.2 76.0 72.6 79.4 88.0 80.3 76.4 80.2 78.8 70.1 69.9 75.9 73.7 73.0 71.8 73.6 69.3 69.9 66.6 70.8 71.4 71.9 69.7 64.4 64.1 60.7 65.8 65.3 65.1 63.9 52.2 53.8 50.3 54.7 54.8 53.9 51.6 47.5 50.4 47.7 47.9 350.4 50.4 47.8 49.7 51.2 53.6 55.0 56.4 52.3 55.9<</td> <td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) 0 45 90 135 180 225 270 315 SOUND PRESSURE LEVEL dB re 20 microPasce 87.5 89.0 92.9 86.8 37.1 86.1 81.5 87.3 85.7 85.0 73.8 79.2 86.0 85.8 81.3 81.4 72.6 79.4 88.0 80.3 76.4 80.2 78.8 82.1 75.3 76.0 75.1 78.4 77.5 73.4 76.9 74.5 70.1 69.9 75.9 73.7 73.0 71.8 73.2 67.2 64.4 64.1 60.7 65.8 65.8 65.1 63.9 59.2 52.5 53.6 75.1 74.6 74.4 74.4 76.4 76.2 64.4 64.1 60.7 65.8 65.8 65.1 63.9 59.2 52.5 54.2 54.2 54.8 54.9</td> <td>LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) OVE 0 45 90 135 180 225 270 315 ENERG SOUND PRESSURE LEVEL dB re 20 microPascal 87.5 89.0 92.9 86.8 87.1 86.1 81.5 87.3 88.3 7.5 89.0 72.9 86.8 97.1 86.1 81.5 87.3 88.3 7.0 78.1 83.5 76.3 77.6 79.2 76.0 78.8 79.0 72.4 79.4 88.0 80.3 76.4 80.2 78.8 92.1 81.9 70.1 69.9 75.9 73.7 73.0 71.8 73.2 69.8 72.8 70.1 69.9 72.1 73.5 74.6 74.4 76.4 70.1 75.2 71.3 70.9 72.1 73.5 54.6 53.8 55.9 52.8 72.8 64.4 64.1 60.7 65.8 65.1</td> <td>AVERAGE 0 45 90 135 180 225 270 315 ENERGY AVE ** SOUND PRESSURE LEVEL dB re 20 microPascal 87.5 89.0 92.9 86.8 37.1 86.1 81.5 87.3 88.3 43.6 85.7 85.0 73.8 79.2 86.0 85.8 81.3 81.4 83.6 44.2 77.0 78.1 83.5 76.3 77.6 79.2 76.8 82.1 81.9 51.7 75.3 76.0 75.1 78.4 77.5 73.4 76.4 70.2 76.2 50.0 70.1 69.9 75.9 73.7 73.0 71.8 73.6 88.3 72.6 50.1 71.7 71.0 79.9 74.6 74.7 74.4 76.4 70.1 75.2 56.1 71.7 71.0 72.9 73.5 54.6 51.4 53.9 51.4 51.8 55.9 56.7</td> <td>AVERAGE LEVELS @ ACOUSTIC EMMISIUN ANGLES OF (DEGREES) AVERAGE LEVEL 0 45 90 135 180 225 270 315 ENERGY AVE ARITH BOUND PRESSURE LEVEL dB re 20 microPascal AVE ARITH B7.5 87.0 92.9 66.8 87.1 86.1 81.5 87.3 88.3 43.6 87.3 77.0 78.1 83.5 63.7 76.7 77.4 78.8 87.1 81.7 83.7 76.7 77.7 74.6 79.4 88.0 80.3 76.4 80.2 78.8 82.1 81.9 51.7 72.7 71.0 79.9 73.7 73.0 71.8 73.6 68.3 72.6 50.1 72.1 71.4 71.4 71.4 73.2 69.8 72.8 50.7 72.5 53.4 53.9 51.6 47.9 52.9</td>	LEVELS @ ACOUSTIC EMMISION AND04590135180SOUND PRESSURE LEVEL 87.5 89.0 92.9 86.8 37.1 85.7 85.0 73.8 79.2 86.0 77.0 78.1 83.5 76.3 77.6 72.6 79.4 88.0 80.3 76.4 75.3 76.0 75.1 78.4 77.5 70.1 69.9 75.9 73.7 73.0 71.7 71.0 79.9 74.6 74.7 71.3 70.9 72.1 73.5 74.6 69.3 69.9 68.6 70.8 71.4 64.4 64.1 60.7 65.8 65.8 52.2 53.8 50.3 54.7 54.8 47.5 50.4 47.7 47.3 50.4 49.7 51.2 53.4 55.9 56.0 54.7 53.6 55.9 59.7 55.5 51.2 53.4 55.9 59.7 57.7 53.5 56.4 60.1 59.1 57.2 53.5 56.4 59.3 57.7 57.7 53.5 56.4 50.1 59.7 57.7 53.5 56.4 59.3 57.3 56.9 54.0 58.1 59.4 59.3 56.9 54.0 58.1 59.3 56.2 57.7 53.5 56.2 58.4 50.7 57.7 53.5 56	LEVELS @ ACOUSTIC EMMISION ANGLES OF 0 45 90 135 180 225 SOUND PRESSURE LEVEL dB re 87.5 89.0 92.9 86.8 37.1 86.1 85.7 85.0 73.8 79.2 36.0 85.8 77.0 78.1 83.5 76.3 77.6 79.2 72.6 79.4 88.0 80.3 76.4 80.2 75.3 76.0 75.1 78.4 77.5 73.4 70.1 69.9 75.9 73.7 73.0 71.8 71.7 71.0 79.9 74.6 74.7 74.4 71.3 70.9 72.1 73.5 74.6 74.4 69.3 69.9 68.6 70.8 71.4 71.9 64.4 64.1 60.7 65.8 65.8 65.1 52.2 53.8 50.3 54.7 54.8 53.9 47.5 50.4 47.7 49.3 50.4 50.4 49.7 51.2 48.6 51.2 52.0 53.3 51.8 51.8 50.7 53.6 55.0 56.4 54.7 53.5 51.0 54.0 55.1 58.3 59.4 55.5 51.0 54.0 56.1 57.7 59.2 60.1 57.7 53.5 56.4 60.1 58.3 59.4 56.3 51.9 56.1 57.7 59.2 60.1 57.7 53.5 56.4 60.1 59.1 61.3 57.2 53.8 57.1 58.9 58.0 59.3 55.5 51.0 54.4 55.9 58.0 59.3 57.7 53.5 56.4 60.1 59.1 61.3 57.2 53.8 57.1 58.9 58.3 61.0 56.9 54.0 58.1 59.4 58.3 60.10 56.9 54.0 58.1 59.4 58.3 57.3 60.8 56.1 55.1 56.2 58.4 55.9 59.4 62.7 66.3 58.1 58.3 55.9 59.4 62.7 66.3 58.1 58.3 56.2 60.5 53.6 54.4 53.3 55.3 53.4 57.0 47.9 47.9 49.0 50.7 49.2 53.2 69.4 69.3 69.6 70.6 70.3 72.3 69.4 69.3 69.6 70.6 70.3 72.3 69.4 69.3 69.6 70.6 70.7 90.4 85.0 86.0 87.1 86.1 85.3 87.4 85.0 86.0 87.1 86.1 85.3 87.4 86.3 07.9 88.0 86.4 85.7 87.6	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGR 0 45 90 135 180 225 270 SOUND PRESSURE LEVEL dB re 20 mic 87.5 89.0 92.9 86.8 87.1 86.1 81.5 85.7 85.0 73.8 79.2 86.0 85.8 81.3 77.0 78.1 83.5 76.3 77.6 79.2 76.0 72.6 79.4 88.0 80.3 76.4 80.2 78.8 70.1 69.9 75.9 73.7 73.0 71.8 73.6 69.3 69.9 66.6 70.8 71.4 71.9 69.7 64.4 64.1 60.7 65.8 65.3 65.1 63.9 52.2 53.8 50.3 54.7 54.8 53.9 51.6 47.5 50.4 47.7 47.9 350.4 50.4 47.8 49.7 51.2 53.6 55.0 56.4 52.3 55.9<	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) 0 45 90 135 180 225 270 315 SOUND PRESSURE LEVEL dB re 20 microPasce 87.5 89.0 92.9 86.8 37.1 86.1 81.5 87.3 85.7 85.0 73.8 79.2 86.0 85.8 81.3 81.4 72.6 79.4 88.0 80.3 76.4 80.2 78.8 82.1 75.3 76.0 75.1 78.4 77.5 73.4 76.9 74.5 70.1 69.9 75.9 73.7 73.0 71.8 73.2 67.2 64.4 64.1 60.7 65.8 65.8 65.1 63.9 59.2 52.5 53.6 75.1 74.6 74.4 74.4 76.4 76.2 64.4 64.1 60.7 65.8 65.8 65.1 63.9 59.2 52.5 54.2 54.2 54.8 54.9	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) OVE 0 45 90 135 180 225 270 315 ENERG SOUND PRESSURE LEVEL dB re 20 microPascal 87.5 89.0 92.9 86.8 87.1 86.1 81.5 87.3 88.3 7.5 89.0 72.9 86.8 97.1 86.1 81.5 87.3 88.3 7.0 78.1 83.5 76.3 77.6 79.2 76.0 78.8 79.0 72.4 79.4 88.0 80.3 76.4 80.2 78.8 92.1 81.9 70.1 69.9 75.9 73.7 73.0 71.8 73.2 69.8 72.8 70.1 69.9 72.1 73.5 74.6 74.4 76.4 70.1 75.2 71.3 70.9 72.1 73.5 54.6 53.8 55.9 52.8 72.8 64.4 64.1 60.7 65.8 65.1	AVERAGE 0 45 90 135 180 225 270 315 ENERGY AVE ** SOUND PRESSURE LEVEL dB re 20 microPascal 87.5 89.0 92.9 86.8 37.1 86.1 81.5 87.3 88.3 43.6 85.7 85.0 73.8 79.2 86.0 85.8 81.3 81.4 83.6 44.2 77.0 78.1 83.5 76.3 77.6 79.2 76.8 82.1 81.9 51.7 75.3 76.0 75.1 78.4 77.5 73.4 76.4 70.2 76.2 50.0 70.1 69.9 75.9 73.7 73.0 71.8 73.6 88.3 72.6 50.1 71.7 71.0 79.9 74.6 74.7 74.4 76.4 70.1 75.2 56.1 71.7 71.0 72.9 73.5 54.6 51.4 53.9 51.4 51.8 55.9 56.7	AVERAGE LEVELS @ ACOUSTIC EMMISIUN ANGLES OF (DEGREES) AVERAGE LEVEL 0 45 90 135 180 225 270 315 ENERGY AVE ARITH BOUND PRESSURE LEVEL dB re 20 microPascal AVE ARITH B7.5 87.0 92.9 66.8 87.1 86.1 81.5 87.3 88.3 43.6 87.3 77.0 78.1 83.5 63.7 76.7 77.4 78.8 87.1 81.7 83.7 76.7 77.7 74.6 79.4 88.0 80.3 76.4 80.2 78.8 82.1 81.9 51.7 72.7 71.0 79.9 73.7 73.0 71.8 73.6 68.3 72.6 50.1 72.1 71.4 71.4 71.4 73.2 69.8 72.8 50.7 72.5 53.4 53.9 51.6 47.9 52.9

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

* - UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
** - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
*** - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
**** - 32 SECOND AVERGING TIME

TABLE ND. C.7-2H.3 (REV.1) BOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED****

SITE:	2	(SOFT) -	150 M. WEST	JULY 12,1983

GROUND IDLE

				oncon					•	urnant	1 6 1 16 1	
	LEVELS	3 @ ACC	DUSTIC	EMMIS	ION AND	GLES OF	DEGR	EES)	OVE	IR 360	DEGREES	
BAND NO.	0	45 SOL	90 JND PRE	135 ISSURE	180 LEVEL	225 d8 re	270 20 miles	315 roPasca		Y AVE	ARITH ***	Std D∨
11111127202222333333333334 456789012345678901234567890	650171247184463265894421060 55555555554333345555555555555555555555	010467481805575410957545760 5565666667747802586601230339 65754333344484555556555 6555655754	078454842184335394499319750 078454842184335394499319750	56666666544444445587098641438 56666666654444444558009886441	483750305203524217489475094 5420344381199344791122211084 483750805203524217489475094	596084484774103500838064551 566666513303500838064551 597555555319 59608448477410350083806455555 5955555319	5666666655333444444555555554 82003542817799023574112233044 844445555555555555555555555555555555	55555566554333334444455555555479616328022230661588377	675681882690615674123528162 56666665543444445555555555 58220243280090247800333336210	939466778734896070146723057	843804035992843077016857033 70192332799891367990001955554	24323222224692927737070378992299 97691951692927737070378992299
AL DASPL PNL PNLT	66.9 69.5 80.7 81.9	64.5 70.4 79.8 82.1	58.9 74.2 73.8 74.2	61.0 73.2 75.6 76.1	62.8 72.2 77.1 77.4	65.9 74.5 80.5 80.9	63.2 72.4 77.9 78.2	64.1 69.4 79.2 81.6	64.0 72.4 78.9 80.3	<u>44_0</u> 	63.4 72.0 78.1 79.0	2.6 2.0 2.5 3.0
		BANDS	14 TO	40 9	STANDA	2D 1/3	NCTAUE	BANDS	25 TO			

ΙU STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz BANDS 14 40

- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES ×× ***

**** - 32 SECOND AVERGING TIME

، «دربه مربک» م

DOT/TGC 6/11/84

TABLE NO. C.7-2H.4 (REV.1) LOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED****

ne ment more in the intervence of the

DOT/TSC 6/11/84

SITE: 2

(SOFT) - 150 M. WEST

JULY 12,1983

HOVER-OUT-OF-GROUND-EFFECT

	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)							EES	ove	VERAGE R 360		
BAND NO.	0	45	90	135	180	225	270	315	ENERG	Y AVE **	ARITH	Std Dv
		SOU	IND PRE	SSURE	LEVEL	d8 re	20 mic	roPasca	. }			
11111120002345678901234567890 123456789012345678901234567890	98778879961823417748898283953 50001123320526377748886664522153 501001123320526377748886664522153	98778888888777810791256664740903	538218202576397068246296835 538218202576397077777766666665	89888888777788581974597607 557811284703728581974597607	988898985253777777766666665555 98889888877777777766666665555 987777777777666666655555	762747198692047968814831244 8888888877788877777666666665	87888888777777777777777777777777777777	83.9521.9001236762179.9770677.679.9777777777777777777777777	9888888942684275939639169569 163665542637886132007854475 98888888777777777777766666665	4445666688550354135652364454 6772777777777766666655463	8820000226996504481385521453 8888888888887777777776666666655	5545244344322223257918319385
AL DASPL PNL PNL T	79.6 96.4 93.8 95.1	86.2 96.1 99.7 101.0	85.4 99.0 100.6 101.7	85.5 97.1 98.8 99.6	82.2 98.8 96.5 97.3	83.9 95.1 97.3 98.1	82.3 94.0 96.3 97.3	82.4 92.7 97.0 98.5	83.9 96.6 97.8 99.0	83.9	83.4 96.1 97.5 98.6	2.2

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

* -- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 ** - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 *** -- UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

**** - 32 SECOND AVERGING TIME

TABLE NO. C.7-4H.1 (REV.1) ROEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

(SOFT) - 300 M. WEST

12		 			
S		5	•		1-4
~	*	L		- 1	

JULY 12,1983

DOT/TSC 6/11/84

			HOVER	- INGR	3DMU0	FFLCT						
	LEVELS	0 AC/	USTIC	EMMISI	ON ANG	SLES OF	DEGR	EES)	AV OVER	ERAGE		
HAND NO.	0	45 300	90 IND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 milc	315 roPasca		Ý AVE **	ARITH	Std Dv
111111122222222233333333345678901234567890	876677665566666666666666655555 147631839123455765432175458 39123455765432175458 397645432175458	706500864646704102319644020 706500864646704102319644020	77777776655555555555544443 517961161753467098754397652 	484638110267436481710758797 777776666666666666555543	876777776655566666666666555443 129157291988134654330730864 139197777766555666666666666666666666666666	777777665555555555555555555544443	403894118242078877626508559 4038941182420788776265085796	87777766555566666666666555554 1424319598901346566412766690 19598901346566412766690 102040895970542770195793196	7777777666655666666666665555553962247207010902255433200952247	3334455545590508235573612277 467380117013590444431063234	585841906169736250463426701 585841906169736222108730905 5955566666665555453	8687097728429439555554555574
AL DASPL FNL FNLT	75.0 84.0 87.5 89.1	74.0 82.7 87.1 88.9	67.7 84.4 81.2 82.0	75.3 86.6 88.3 88.9	73.6 85.1 86.1 86.6	68.7 82.4 81.7 82.4	60.7 80.6 73.5 74.2	75.1 84.5 87.9 89.9	73.0 84.1 85.9 87.6	73.0	71.3 83.8 84.2 85.2	5.2 1.8 5.1 5.4

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

* - UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES ** - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES **** - 32 SECOND AVERGING TIME

TABLE NO. C.7-4H.2 (REV.1) ROEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

DUT/150 6/11/84

AS MEASURED****

SITE:	4H	(SOFT) -	300 M. WEST	JULY 12,1983
-------	----	----------	-------------	--------------

FLIGHT IDLL

				1 1 1 0 1 1								
	LEVELS	@ ACC	DUSTIC	EMMIS	ION AND	LES OF	(DECR	EES)	A 3V0	VERAGE R 360	DEGREES	
BAND NO.	0	45 SOL	90 IND PRE	135 ISSURE	180 LEVEL	225 dB re	270 20 выс	315 roPasc		Y AVE **	ARI]H ***	Std Dv
11111112222222222233333333334 1111112222222222	$\begin{array}{c} 0 & 6 & 0 & 8 \\ 78 & 6 & 0 & 8 \\ 28 & 6 & 6 & 5 \\ 54 & 6 & 5 & 5 \\ 54 & 6 & 5 & 5 \\ 54 & 4 & 19 & 5 \\ 64 & 5 & 7 & 8 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 5 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 6 & 7 \\ 78 & 6 & 7 & 7 \\ 78 & 6 & 7 & 7 \\ 78 & 6 & 7 & 7 \\ 78 & 6 & 7 & 7 \\ 78 & 78 &$	7766666554443333333333333432 858830074931768867998754621 799349868129359115209889534621	13334474024602358586647534 8677666665440909656777863557 86791694090965677786357	94239840972419240026164638 77807332606231211109863347 3326062312111109863347	73649686448401526950746	122,80508340213384625321437 2776811205618890111121097460 41890111121097460	365003244356609094909395729 265842492486799212221297934	7677655554333333333333333333333333333333	$\begin{array}{c} 317922230610109148850313570\\ 77666665830999141222197325\\ 44439792325\\ 4443225\\ 333442225\\ 3334325\\ 54325$	33349490541707126754380344873518465	384474908343545282487110143 719942204827889090100086014 204827889090100086014 34343333434444433432	35340031100000000480193040
AL DASFL PNL FNLT	58.3 81.0 72.2 73.7	53.0 81.2 68.4 70.5	55.8 85.2 71.7 72.6	54.4 79.7 68.8 69.4	53.7 80.4 67.8 68.6	53.8 80.4 67.6 68.2	54.3 75.9 68.8 69.5	51.3 80.0 66.3 68.5	54.9 81.2 69.5 70.9	54.9	54.3 80.5 88.9 70.1	2.1
		CANDO.					007.00		17. 19			

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 **** - 32 SECOND AVERGING TIME

TABLE NO. C.Z-4H.3 (REV.L) HOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED****

DOT/ISC 6/11/84

(GOLT) - 300 M. WEST JULY 12,1983 SITE: 4H

GROUND IDLE*****

				GRUUND	IDLET	****			AL.	ERAGE	LEVEL	
	LEVELS	@ ACU	USTIC	EMMISI	ON ANG	LES OF	(DEGR	EES)	ovëř	360	DEGREES	
BAND NO.	0	45 รถม	90 ND PRT	135 SSURE	180 LEVEL	225 d8 re	270 20 mile	315 roPasca	ENERGY *	AVE. **	AKITH ***	Std Dv
1111112222223333333333345678901234567890123456789012345678901234567890	485355616411818255107949807 4892002092765464578820989429 333333333334433333329	50010194976830512645535637410 5338688648207777223144438181 533868864820777722331444438181 5333333333333333333333333333333333	55555555555555555555555555555555555555	50 4607009715332216554554218980540 5565669715332216555455421849 66555544443333333332221	0998720245028338720485844621 9231455241286665566532070 45555561286665566532070	50.80 544.01 544.01 554.40 5557.93 557.40 5557.40 557.40 557.40 557.40 557.40 557.40 557.40 557.40 557.40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 50 50 50 50 50 50 50 5	50.135 53.94507459 554.555635555555555555555555555555555555	50.9555133323999534097396761 	510737649647885584384891789 510737649647885584384891789	64.74512535781066180307096674 1223346730013455557698856171	058809640946807416586779072	
AL NASFI FNL FNL T	50.5 60.3 64.0 65.0	48.2 65.9 62.8 65.0	47.6 63.4 61.7 62.1	50.4 68.1 64.2 64.6	47.9 62.8 61.7 61.9	51.1 64.1 64.9 65.3	46.1 62.8 59.9 60.5	45.9 60.2 60.0 62.0	48.9 64.2 62.9 63.8	48.9	48.5 63.4 62.4 63.3	2.7 2.7 1.9 1.9

BANDS 14 TO 40 - STANDARD 1/3 UCTAVE BANDS 25 TO 10KHz

- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES ж¥ **X X X** **** - 32 SECOND AVERGING TIME

*****- TABULATED LEVELS ARE CONTAMINATED BY LOCAL AMBIENT

TARLE NO. C.7-4H.4 (REV.1) BOLING VERTOL CH-47D HELICOPTER (CHINOOK) DOT/TSC 6/11/84 1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED****

(SOFT) - 300 M. WEST JULY 12,1983

HOVER-OUT-OF-GROUND-EFFECT

a a see a

SITE: 4H

		r1	045.4-0	01-06-	OLOOM							
	LEVELS	@ ACO	USTIC	EMMIS	ON AN	GLES OF	CDEGR	EES)	aver	2 360	DEGREES	
BAND NO.	0	45 SOU	90 ND FRE	135 SSURE	180 LEVEL	225 d8 re	270 20 mic	315 roPasca	ENERGY	AVE **	ARITH ***	Std Dv
1111112727277772333333333345678901234567890	84647667666466666666555559999 1715475577248496683351209893 515475577248496683351209893	587777777777777777666666666666555554 062257966554109888813440320338 6677087364398770 877087364398770 877087364398770 877087364398770 877087364398770 877087364398770 877087364398770 877087364398770 877087364398770 8770877087364398770 87708770877087364398770 87708770877087364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 8770877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 877087708770877364398770 8770877087708770877364398770 8770877087708770877364398770 87708770877087708770877364398770 87708770877087708770877087708770877	767777877776666777666666555553 87998087406780195140064217 8799362463009798588888593956	904680013588019521624785118 904680013588019521624785118	84777777777777777777777777777777777777	824775727880922058232124093 27777245219999311722230952186 46637724521999931172230952186	8777777776666666666666655553 155555451955547999611300053207 159555450871560145814067093	7777777776666666666666555536277777777777	8777777777766668896666666655555 4048657086489997987701111195	33345555566666666666666666555553 5795036911.00257864242174315 56666666666666666666555553	800394427452303040445662077 7777777866688953130953206 7866888953130953206	04447385804514485747870410388 20444731,335337777747870410388
AL DASFL FNL FNLT	71.8 83.5 84.7 85.5	77.9 88.4 91.4 92.3	77 . 9 88.6 90.8 91.7	77.1 88.3 89.3 89.8	74.5 87.1 87.6 88.9	77.4 86.3 89.6 90.5	75.3 86.3 88.1 88.7	74.3 83.4 88.0 89.6	76.2 86.9 89.1 90.0	76.2	75.8 86.5 88.7 89.6	2.2 2.1 2.1 2.1 2.1

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

×		UNWEIGHTED B	ENERGY AVERAGE OF	MEASURED LEVELS OVER 360 1	DEGREES
* *	••••	A-WEIGHTED B	ENERGY AVERAGE OF	MEASURED LEVELS OVER 360	DEGREES
***		UNWEIGHTED A	ARITHMETIC AVERAGE	OF MEASURED LEVELS OVER	360 DEGREES
****		TO SECOND A	UERGING TIME		

TABLE NO. C.7-5H.1 (REV.1) BOEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

DOT/TSC 6/11/84

AS MEASURED****

SITE: 5H (HARD) - 150 M. NORTH JULY 12,1983

HOVER-IN-GROUND-EFFECT

			11041-11	114 011					~	IED ACC	1.00110001	
	LEVELS	e aco	USTIC	EMMISI	ON AND	GLES OF	OEGR	EES)	OVE	R 360	DEGREES	
BAND NO.	0	45 SOU	90 ND PRE	135 SSURE	180 LEVEL	225 dB re	279 20 mic	315 rofasca	ENERG'	Y AVE **	ARI]H ***	Std Dv
11111122222222223333333333333345678901234567890123456789012345678901234567890	30969448746153457457C3C9922 602380786544208532210098951 10098951	897789888888778777766666555665 768923343329806310852199060 89888888877887777766666555665	878887994392749617011156424985 26161991077318985419755432145 55555555555555555555555555555555555	8888878877777777766666665555555 6660329009865322085331987680 888887887777777666604846703	913306985075089155305209947 91330698550750891553052099866669	87777777777777766666666555554	897351129632751672439317171 8973551129632751672439317171	87777777777776666666665605565	812581542974912980591382636 812581542974912980591382636	444555666438018193186514587521 1763664380181931865145875564 1717	8877777777777777666665555564 5026666397282560899636848803	1445343433333343323222222222222222222222
AL DASPL PNL PNL T	77.3 90.3 91.3 92.9	84.2 94.9 97.3 99.1	76.1 91.8 90.9 91.9	79.3 92.9 93.1 93.8	76.4 90.1 89.9 90.5	78.4 89.3 91.5 92.2	73.5 86.8 86.4 87.4	76.4 88.4 90.0 91.9	78.9 91.3 92.6 94.0	78.9	77.7 90.6 91.3 92.5	3.1 2.6 3.1 3.3

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

* - UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES ** - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES **** - 32 SECOND AVERGING TIME

TABLE NO. 0.7-5H.2 (REV.1) KOEING VERTOL CH-47D HELICOFTER (CHINOOK)DOT/TSC
6/11/841/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

SITE: 5H

والفارين والمحافظة والمحافظ والمحافظ والمحافظ والمعارية والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ

(HARD) - 150 M. NORTH JULY 12,1983

FLIGHT IDLL

				, r. 10, , ,	A 4.7 4 M.					UCHACC	e r=136=1	
	LLVELS	0 ACO	USTIC	EMMISI	ON AND	BLES OF	OEGR	EES)	ove	R 360	DEGREEG	
L'AND NO.	0	45 300	90 ND PRF	135) SSURE	180 LEVEL	225 (10 re	270 20 внс	315 roHasca	ENERG'	Y AVE **	Ak(11H ¥*⊀	S€d DV
11111122222345678901234567890	3011277667708871105721315148644	8877777777766666655555555654 40353122233998431988876678869 678837579580026543723895287	8778777777666666555554729897787777766666422998866939	86777777777777766666666666655 1617634554201198644433220062 819362642673320329590707393	024711019989870577092271548 3018066665554444310976543304 30487666665554444310976543304	877777777777766666666665555 375910233310997754543219961 999526178380709168102328537	970500211937806461161539977 970500211937806461161539977	877777667666666666665655555654 313718909976554319087776547 	877483123320885665322090478096 4130830568304342090478096	33344455556666666666666673981 989778379122344432321098237 989778379122344432321098237	877777777777866666666665556654 35362012221087754211098887149 156283842814829786422612050	2524203333200200000000000000000000000000
AL QASFL PNL FNL T	72.7 86.4 87.5 88.9	74.1 88.0 90.0 91.8	75.5 90.7 89.4 90.1	77.5 87.1 91.2 91.5	71.6 85.8 84.0 84.4	76.7 87.9 90.4 90.5	75.2 85.2 88.5 89.1	73.2 85.8 88.2 89.8	75.0 87.5 89.0 90.1	75.0	74.6 87.1 88.6 89.5	?.0 1.8 ?.2 ?.3

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

×		UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES	
××		A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES	
***	•	UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES	
****		32 SECOND AVERGING TIME	

TABLE NO. C.7-5H.3 (REV.1) ROEING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

DOT/FSC 6/11/84

AS MEASURED****

SITE:	5H	(HARD)	 150 M.	NORTH	JULY	12,1983

				GROUND	IDLE				•		1 6 1 1671	
	LEVELS	0 ACO	USTIC	EMMISI	ON ANG	LES OF	(DEGR	EES)	ovë	R 360	DEGREES	
BAND NO.	0	45 SOU	90 ND PRE	135 SSURE	180 LEVEL	225 d8 re	270 20 milc	315 roPasc	ENERG *	Y AVE **	ARITH ***	Std Dv
1111112222222223333333333334 456789012345678901234567890	45555555555555555555555555555555555555	095827978142390228140768658 226489907667645345376563661 255555555555555555555555555555555555	566666666666655555555555555555 9622223555310098886555455546217 96222235531009888655455546217	4451200901972133419938417864 68119018821790908009863519 6908009863519	4546757569219876261555555555	801041838473224053889142045 688915454524422223233322973 555566666666666666666666755	521665531664987693170454145 6189144543230900999901101861 61865531664987693170454145	393202267236793204779891036 3932022672367932047798885761	978948283821060418935042197 978948283821060418935042197 988888799981641	12222334444555555555666656554 003739367803446789800091639 003739367803446789800091639	2452323048553928955555555555555555555555555555555	476377127962264146926518971

AL DASFL	64.8 68.4	68.9 71.5	67.7	70.1	68.0 71.3	74.3	72.0	70.3	70.3	70.3	69.5 72.7	2.9
PNL FNLT	79.7	84.3 86.7	81.9 82.9	82.6 84.2	81.6 81.9	88.1 88.4	86.3 86.8	85.7 88.1	84.6 85.9	-	83.8	2.8

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

* - UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
** - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
*** - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
**** - 32 SECOND AVERGING TIME

TABLE NO. C.7-5H.4 (REV.1) LOCING VERTOL CH-47D HELICOPTER (CHINOOK) 1/3 OCTAVE NOISE DATA -- STAFIC TESTS

AS MEASURED****

SITE: 5H

(HARD) - 150 M. NORTH

JULY 12,1983

Planter and

DOT/TSC 6/11/84

HOVER-OUT-OF-GROUND-EFFECT

									A	ERAGE	LEVEL	
	LEVELS	@ ACC	DUSTIC	EMMIS	ION AND	GLES OF	(DEG	REES)	OVER	360	DEGREES	
BAND NO.	0	45 SOL	90 IND PRE	135 ISSURE	180 LEVEL	225 dB re	270 20 mi	315 croPasca	ENERGY	' AVE **	ARITH ***	Std Dv
1156789012345678901234567890 123456789012345678901234567890	97877788888097777777777766666698 38477788210199556751211999766698 8888877751211999766698	88788889998778877777777777777 882788889999877887796733211142 882726792105684287996733211142	933561305682574429543912189 9999999877777777666665	575415226576689785481718899 5888141522657668978554208779 59888540690197554208779 77777766655	523414148607228740634154643 98887777777779975337	036784055471019251981975313 888888888777277854210975313		88791.96245602838058588382238 8991.96245602838058588382238	90.186784560937645628407861861 888875599865757777777866810 90.186784560937645628407861861	455566777777777777777777777777777777777	88888888888777777777777777777777777777	NBN+NOB5797305057830216057 6366445443NNC/305027830216057
AL DASFL FNL FNLT	84.2 96.0 98.1 99.3	90.1 99.2 104.1 105.3	87.4 101.9 103.3 104.4	83.8 100.0 102.6 103.3	86.5 100.2 101.4 102.0	85.0 93.6 98.3 99.1	-	86.8 94.1 101.2 102.7	87.4 98.8 101.9 103.1	87.4	87.0 97.9 101.3 102.3	2.0 3.3 2.3 2.4

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
 UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

**** - 32 SECOND AVERGING TIME

APPENDIX D

Direct Read Acoustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data (Leq values) obtained using direct read Precision Integrating Sound Level meters. Data are presented for microphone locations 5H, 2, and 4 (see Figure 3.3).

A description of the measurement systems is provided in Section 5.6.2, and a figure of the typical PISLM system is shown in Figure 5.4. Data are shown in Table D-1, depicting the equivalent sound levels for eight different source emission angles. In each case the angle is indexed to the specific measurement site. A figure showing the emission angle convention is included in the text (Figure 6.1). In each case, the Leq (or time averaged AL) represents an average over a sample period of approximately 60 seconds.

Quantities appearing in this appendix include:

HIGE	Hover-in-ground-effect, skid height 5 feet above ground level
HOGE	Hover-out-of-ground-effect, skid height 30 feet above ground level
Flight Idle	Skids on ground
Ground Idle	Skids on ground

TABLE D.1

STATIC OPERATIONS DIRECT READ DATA (ALL VALUES A-WEIGHTED LEG, EXPRESSED IN DECIBLES)

BOEING-VERTOL CH-47D

7-12-83

All a state of the second a second

SITE 4H

HIGE		FLT.IDLE		GRN.1DLE		HOGE	
M-90	75.90	N-90A	58.80	N-90B	51.00	0-90	73.20
N-45	74.50	N-45A	53.90	N-45B	47.70	0-45	75.90
N-0	62.00	N-0A	56.00	N-08	48.10	0-0	76.70
N-315	69.20	N-315A	56.30	N-315B	52.00	0-315	78.00
M-270	24.50	N-270A	56.60	N-270B	49.40	0-270	76.00
N-225	77.30	N-225A	56.80	N-2258	49.30	0-225	79.00
N-180	68.50	N-180A	57.20	N-180B	49.40	0-180	79.00
M-135	75.30	N-135A	55.50	N-135B	48.50	0-135	78.70

SITE 2

in Jacobilla State

HIGE		FLT.IDLE		GRN.IDLE		HOGE	
M-90 H-45 N-0 H-315 M-270 M-225 M-180	76.60 77.50 67.20 77.60 77.70 80.80 73.90	N-90A N-45A N-0A N-315A N-270A N-225A N-180A	70.80 72.80 69.90 73.40 71.10 70.80 70.50	N-90B N-45B N-0B N-315B N-270B N-225B N-180B	64.60 65.60 64.60 66.60 64.10 61.20 58.70	0-90 0-45 0-0 0-315 0-270 0-225 0-180	80.20 82.50 82.80 84.20 82.70 86.20 86.10
M-135	84.80	N-135A	70.20	N-1358	66.20	0-135	86.40

SITE 5H

HIGE		FLT.IDLE		GRN.IDLE		HOGE	
M-90	NA	N-90A	76.30	N-90B	68.10	0-90	89.10
N-45	85.10	N-45A	75.50	N-45B	69.60	0-45	91.00
11 TJ M_0	78 00	N-BA	78.60	N-0B	35.60	0-0	84.80
11"U M_215	77 70	N-3150	74.30	N-315B	69.70	0-315	87.40
M 070	76.10	N-2784	75.00	N-270B	70.90	0-270	86.30
M-2/0	73.10	N-2254	77 16	N-2258	74.10	0-225	85.90
M-223	77.80	11-22JH	72 00	N~1808	67.20	0-180	88.80
N-188 N-125	/0.4U 80.20	N~135A	78.30	N-135B	69.90	0-135	90.60
M-135	80.20	N~135A	78.30	N-130R	67.90	0-199	70.0

APPENDIX E

Cockpit Instrument Photo Data

During each event of the July 1983 Helicopter Noise Measurement program cockpit photos were taken. The slides were projected onto a screen (considerably enlarged) making it possible to read the instruments with reasonable accuracy. The photos were supposed to be taken when the aircraft was directly over the centerline-center microphone site. Although this was not achieved in each case the cockpit photos reflect the helicopter "stabilized" configuration during the test event. One important caution is necessary in interpreting the photographic information; the snapshot freezes instrument readings at one moment of time whereas most readings are constantly changing by a small amount as the pilot "hunts" for the reference condition. Thus fluctuations above or below reference conditions are to be anticipated. The instrument readings are most useful in terms of verifying the region of operation for different parameters. The data acquisition is discussed in Section 5.3

Each table within this appendix provides the following information:

Event No.	This event number along with the test date provides a cross reference to other data.
Event Type	This specifies the event.
Time of Photo	The time of the range control synchronized clock consistent with acoustical and tracking time bases.
Heading	The compass magnetic heading which fluctuates around the target heading.
Altimeter	Specifies the barometric altimeter reading, one of the more stable indicators.
IAS	Indicated airspeed, a fairly stable indicator.
Rotor Speed	Main Rotor speed in RPM or percent, a very stable indicator.
Torque	The torque on the main rotor shaft, a fairly stable value.

TABLE E.1

COCKPIT PHOTO DATA

A REAL PROPERTY AND A REAL

HELLCON	oTER	CH-47D				TEST DAT	re 7/12/83	
EVENT VO.	EV	/ENT TPE	TIME OF PHOTO	HEADING (DEGREES)	ALTIMETER (AGL) FT. (METERS)	IAS (KTS)	ROTOR SPEED (RPM OR %)	TORQUE
Al	5001	LFO ICAO	9:12	120		135	101	62
A 2	500	LFO ICAO	9:15	300	ł	130	1	65
A3	500	LFO ICAO	9:18	120	1	135	98	68
A4	500	LFO ICAO	9:22	ł	I	1	1	1
A5	500	LFO ICAO	9:25	120	ı	135	101	65
A6	500	LFO ICAO	9:27	I	ı	1	I	1
B7	500	LFO Military	9:31	120	ı	130	101	65
B8	500	LFO Military	9:33	300	ı	ł	101	1
B10	500	LFO Military	9:38	I	I	140	1	1
c11	5001	LFO	9:41	120	ı	I	98	1
C12	5001	LFO	9:44	300	1	135	98	70
C13	500	LFO	9:47	120	I	ł	98	1
C14	5001	LFO	9:50	300	ł	135	98	70
D15	500	LFO	9:53	120	ı	120	98	62
D16	5001	LFO	9:57	300	I	125	98	65
D17	500	LFO	10:00	ı	I	1	ł	ı
D18	500	LFO	10:04	300	1	120	98	65
D19	500	LFO	10:07	120	I	120	98	70
E20	500	LFO	10:14	I	069	110	98	52
E21	500	LFO	10:16	ı	ı	105	98	50
E22	500	LFO	10:19	300	1	I	98	56
E23	500	LFO	10:21	120	800	100	98	50
E24	500	LFO	10:24	300	1	105	98	56
E25	500	LFO	12:17	120	1	98	98	66
F26	1000	' LFO	12:22	120	1251	135	66	64
F27	1000	' LFO	12:26	120	1200	135	66	74
F28	1000	' LFO	12:31	120	1225	135	98	70
F29	1000	' LFO	12:35	120	ı	132	98	70

TABLE E.2

COCKPIT PHOTO DATA

TEST DATE 7/12/83

HELICOPTER CH-47D (Cont.)

EVENT VO.	EVENT TYPE	TIME OF PHOTO	HEADING (DEGREES)	ALTIMETER (AGL) FT. (METERS)	IAS (KTS)	ROTOR SPEED (RPM OR %)	TORQUE (%)
H30	APPROACH (ICAO)	12:41	120	9	132	98	70
H31	APPROACH (ICAO)	12:46	120	700	80	66	40
H32	APPROACH (ICAO)	12:50	120	600	I	100	35
Н33	APPROACH (ICAO)	12:55	120	670	80	66	32
H34	APPROACH (ICAO)	12:59	120	790	79	66	20
H35	APPROACH (ICAO)	13:04	125	810	6 0	100	30
тзƙ	APPROACH (MTI.ITAR	Y)13:08	I	ı	1	66	40
137	APPROACH (MILITAR)	Y)13:18	120	I	I	66	35
138	APPROACH (MILITAR)	Y)13:23	125	I	67	100	23
139	APPROACH (MILITAR	Y)13:28	125	I	19	66	25
640	TAKEOFF (ICAO)	14:01	300	ı	ı	101	73
642 642	TAKEOFF (ICAO)	14:11	300	1	19	101	75
G43	TAKEOFF (ICAO)	14:17	300	I	06	101	75
G44	TAKEOFF (ICAO)	14:22	I	1	I	ŧ	1
G45	TAKEOFF (ICAO)	14:28	305	470	77	101	87
K46	APPROACH	14:32	120	0	77	98	40
347	TAKEOFF	14:35	305	750	85	101	72
K48	APPROACH	14:38	120	ı	06	98	38
J49	TAKEOFF	14:41	300	ı	80	100	70
K50	APPROACH	14:44	120	0	95	98	40
J51	TAKEOFF	14:47	305	ı	83	100	76
K52	APPROACH	14:49	120	ı	100	98	33
L53	TAKEOFF (MILITARY) 14:53	305	ı	20	101	68
L54 L55	TAKEOFF (MILITARY TAKEOFF (MILITARY) 14:56) 14:59	305 305	500	70	101	60 99
1							

APPENDIX F

Photo-Altitude and Flight Path Trajectory Data

This appendix contains the results of the photo-altitude and flight path trajectory analysis.

The helicopter altitude over a given microphone was determined by a photographic technique which involves photographing an aircraft during a flyover event and proportionally scaling the resulting image with the known dimensions of the aircraft. The data acquisition is described in detail in Section 5.2. The detailed data reduction procedures is set out in Section 6.2.1; the analysis of these data is discussed in Section 8.2

Each table within this appendix provides the following information:

Event No.	the test run number
Est. Alt.	estimated altitude above microphone site
P-Alt.	altitude above photo site, determined by photographic technique
Est. CPA	estimated closest point of approach to microphone site
Est. ANG	Helicopter elevation with respect to the ground as viewed from a sideline site as the helicopter passes through a plane perpendicular to the flight track and coincident with the observer location.
ANG 5-1	flight path slope, expressed in degrees, between P-Alt site 5 and P-Alt site 1.
ANG 1-4	flight path slope, expressed in degrees, between P-Alt Site 1 and P-Alt Site 4.
ANG 5-4	flight path slope, expressed in degrees, between P-Alt Site 5 and P-Alt Site 4.
Reg C/D Angle	flight path slope, expressed in degress, of regression line through P-Alt data points.

ومنجله فالموامعات والمطروفة فالاستعاقات والمتحادثات والالاعمان بقاصير والمكارك فالاحتقاد منتعا معلد فاستطاعها إلى والانار وتناك سابات للاحد والمري

TABLE F.1

•

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

dary manageness and the Pathan mail of the Article and the

ومقاركة بعادية وتعاشم فمدينا مليهم ومعاده وماليل

OPERATION: 500 FT.1CAO FLYOVER/TARGET IAS=135 KTS

		C: 1	TERLINE				SI	DELINE					
1	IC #5	N	IC #1	M	IC #4	MI	C #2	MI	C #3				REG.
EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ang	C/D
ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ang	5-1	1-4	5-4	ANGLE
499.8	500.7	525.5	509.9	546	548.2	719.9	46.9	717.5	47	1.1	4.5	2.8	2.4
533.1	518.1	536.8	568.7	539.7	521	728.1	47.5	727.8	47.5	5.9	-5.4	.2	.3
525.7	525.9	515.2	520.2	506.9	506.8	712.4	46.3	713.4	46.3	6	-1.5	-1	9
524.7	525.5	516.9	519.3	510.7	511.4	713.7	46.4	714.4	46.4	6	8	7	6
531.6	530	530	534.3	528.7	526.7	723.1	47.1	723.3	47.1	.5	8	1	0
560.8	557.4	569.5	572.6	576.5	572.6	752.6	49.2	751.8	49.2	1.8	0	.9	.8
529.3	526.3	532.3	537.5	534.8	531.1	725	47.2	724.7	47.3				
19.6	18.5	19.9	26.9	25.6	25	14.7	1.1	14.4	1.1				
	F EST. ALT. 499.8 533.1 525.7 524.7 531.6 560.8 529.3 19.6	NIC #5 EST. ALT. P-ALT. 499.8 500.7 533.1 518.1 525.7 525.9 524.7 525.5 531.6 530 560.8 557.4 529.3 526.3 19.6 18.5	C: MIC #5 M EST. EST. ALT. P-ALT. ALT. 499.8 500.7 525.5 533.1 518.1 536.8 525.7 525.9 515.2 524.7 525.5 516.9 531.6 530 530 560.8 557.4 569.5 529.3 526.3 532.3 19.6 18.5 19.9	C: TERLINE NIC #5 NIC #1 EST. EST. ALT. P-ALT. ALT. P-ALT. 499.8 500.7 525.5 509.9 533.1 518.1 536.8 568.7 525.7 525.9 515.2 520.2 524.7 525.5 516.9 519.3 531.6 530 530 534.3 560.8 557.4 569.5 572.6 529.3 526.3 532.3 537.5 19.6 18.5 19.9 26.9	C: TERLINE MIC #5 NIC #1 M EST. EST. EST. ALT. P-ALT. ALT. P-ALT. ALT. 499.8 500.7 525.5 509.9 546 533.1 518.1 536.8 568.7 539.7 525.7 525.9 515.2 520.2 506.9 524.7 525.5 516.9 519.3 510.7 531.6 530 530 534.3 528.7 560.8 557.4 569.5 572.6 576.5 529.3 526.3 532.3 537.5 534.8 19.6 18.5 19.9 26.9 25.6	NIC #5 NIC #1 NIC #4 EST. EST. EST. ALT. P-ALT. ALT. P-ALT. 499.8 500.7 525.5 509.9 546 548.2 533.1 518.1 536.8 568.7 539.7 521 525.7 525.5 516.9 510.7 511.4 531.6 530 530 534.3 528.7 526.7 546.8 557.4 569.5 572.6 576.5 572.6 529.3 526.3 532.3 537.5 534.8 531.1 19.6 18.5 19.9 26.9 25.6 25	NIC #5 NIC #1 MIC #4 MI EST. EST. EST. EST. EST. EST. ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. CPA 499.8 500.7 525.5 509.9 546 548.2 719.9 533.1 518.1 536.8 568.7 539.7 521 728.1 525.7 525.9 515.2 520.2 506.9 506.8 712.4 524.7 525.5 516.9 519.3 510.7 511.4 713.7 531.6 530 530 534.3 528.7 526.7 723.1 560.8 557.4 569.5 572.6 576.5 572.6 752.6 529.3 526.3 532.3 537.5 534.8 531.1 725 19.6 18.5 19.9 26.9 25.6 25 14.7	C: TERLINE SII MIC #5 MIC #1 MIC #4 MIC #2 EST. EST. EST. EST. EST. ELEV ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. CPA ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 531.6 530 530 534.3 528.7 723.1 47.1 560.8 557.4 569.5 572.6 576.5 572.6 752.6 49.2 529.3 526.3 532.3 537.5 534.8 531.1 725 47.2 19.6 18.5 19.9 26.9 25.6 <td< td=""><td>C: TERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MI EST. EST. EST. EST. EST. EST. EST. EST. EST. ANG CPA 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 531.6 530 530 534.3 528.7 526.7 723.1 47.1 723.3 560.8 557.4 569.5 572.6 572.6 752.6 49.2 751.8 529.3 526.3 532.3 537.5 534.8 531.1 725 47.2 724.7 19.6</td><td>NIC #5 NIC #1 NIC #4 NIC #2 NIC #3 EST. EST. EST. EST. EST. EST. EST. EST. ELEV EST. ELEV EST. ELEV EST. ELEV EST. ELEV EST. ELEV ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 47 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 47.5 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 46.3 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 46.4 531.6 530 530 534.3 528.7 526.7 722.1 47.1 723.3 47.1 560.8 557.4 569.5 572.6 576.5 572.6 752.6 49.2 751.8</td><td>C: TERLINE SIDELINE NIC #5 NIC #1 NIC #4 MIC #2 NIC #3 EST. EST. EST. EST. EST. ELEV EST. ELEV ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 47 1.1 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 47.5 5.9 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 46.3 6 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 46.4 6 531.6 530 530 534.3 528.7 526.7 723.1 47.1 723.3 47.1 .5 560.8 557.4 569.5 572.6 576.5 572.6 752.6 49.2 751.8 49.2 1.8 <t< td=""><td>C: TERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 EST. EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 47 1.1 4.5 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 47.5 5.9 -5.4 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 46.3 6 -1.5 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 46.4 6 8 531.6 530 530 534.3 528.7 526.7 723.1 47.1 723.3 47.1 .5 8 540.8 557.4 569.5 572.6 572.6 7</td><td>C. TERLINESIDELINEMIC #5MIC #1MIC #4MIC #2MIC #3EST.EST.EST.EST.EST.ELEVEST.ELEVALT. P-ALT.ALT. P-ALT.ALT. P-ALT.CPAANG5-11-45-4499.8500.7525.5509.9546548.2719.946.9717.5471.14.52.8533.1518.1536.8568.7539.7521728.147.5727.847.55.9-5.4.2525.7525.9515.2520.2506.9506.8712.446.3713.446.36-1.5-1524.7525.5516.9519.3510.7511.4713.746.4714.446.4687531.6530530534.3528.7526.7723.147.1723.347.1.581560.8557.4569.5572.6576.5572.649.2751.849.21.80.9529.3526.3532.3537.5534.8531.172547.2724.747.31.114.41.1</td></t<></td></td<>	C: TERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MI EST. EST. EST. EST. EST. EST. EST. EST. EST. ANG CPA 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 531.6 530 530 534.3 528.7 526.7 723.1 47.1 723.3 560.8 557.4 569.5 572.6 572.6 752.6 49.2 751.8 529.3 526.3 532.3 537.5 534.8 531.1 725 47.2 724.7 19.6	NIC #5 NIC #1 NIC #4 NIC #2 NIC #3 EST. EST. EST. EST. EST. EST. EST. EST. ELEV EST. ELEV EST. ELEV EST. ELEV EST. ELEV EST. ELEV ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 47 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 47.5 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 46.3 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 46.4 531.6 530 530 534.3 528.7 526.7 722.1 47.1 723.3 47.1 560.8 557.4 569.5 572.6 576.5 572.6 752.6 49.2 751.8	C: TERLINE SIDELINE NIC #5 NIC #1 NIC #4 MIC #2 NIC #3 EST. EST. EST. EST. EST. ELEV EST. ELEV ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 47 1.1 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 47.5 5.9 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 46.3 6 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 46.4 6 531.6 530 530 534.3 528.7 526.7 723.1 47.1 723.3 47.1 .5 560.8 557.4 569.5 572.6 576.5 572.6 752.6 49.2 751.8 49.2 1.8 <t< td=""><td>C: TERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 EST. EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 47 1.1 4.5 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 47.5 5.9 -5.4 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 46.3 6 -1.5 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 46.4 6 8 531.6 530 530 534.3 528.7 526.7 723.1 47.1 723.3 47.1 .5 8 540.8 557.4 569.5 572.6 572.6 7</td><td>C. TERLINESIDELINEMIC #5MIC #1MIC #4MIC #2MIC #3EST.EST.EST.EST.EST.ELEVEST.ELEVALT. P-ALT.ALT. P-ALT.ALT. P-ALT.CPAANG5-11-45-4499.8500.7525.5509.9546548.2719.946.9717.5471.14.52.8533.1518.1536.8568.7539.7521728.147.5727.847.55.9-5.4.2525.7525.9515.2520.2506.9506.8712.446.3713.446.36-1.5-1524.7525.5516.9519.3510.7511.4713.746.4714.446.4687531.6530530534.3528.7526.7723.147.1723.347.1.581560.8557.4569.5572.6576.5572.649.2751.849.21.80.9529.3526.3532.3537.5534.8531.172547.2724.747.31.114.41.1</td></t<>	C: TERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 EST. EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG 499.8 500.7 525.5 509.9 546 548.2 719.9 46.9 717.5 47 1.1 4.5 533.1 518.1 536.8 568.7 539.7 521 728.1 47.5 727.8 47.5 5.9 -5.4 525.7 525.9 515.2 520.2 506.9 506.8 712.4 46.3 713.4 46.3 6 -1.5 524.7 525.5 516.9 519.3 510.7 511.4 713.7 46.4 714.4 46.4 6 8 531.6 530 530 534.3 528.7 526.7 723.1 47.1 723.3 47.1 .5 8 540.8 557.4 569.5 572.6 572.6 7	C. TERLINESIDELINEMIC #5MIC #1MIC #4MIC #2MIC #3EST.EST.EST.EST.EST.ELEVEST.ELEVALT. P-ALT.ALT. P-ALT.ALT. P-ALT.CPAANG5-11-45-4499.8500.7525.5509.9546548.2719.946.9717.5471.14.52.8533.1518.1536.8568.7539.7521728.147.5727.847.55.9-5.4.2525.7525.9515.2520.2506.9506.8712.446.3713.446.36-1.5-1524.7525.5516.9519.3510.7511.4713.746.4714.446.4687531.6530530534.3528.7526.7723.147.1723.347.1.581560.8557.4569.5572.6576.5572.649.2751.849.21.80.9529.3526.3532.3537.5534.8531.172547.2724.747.31.114.41.1

TABLE F.2

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT.MILITARY FLYOVER/TARGET IAS=135 KTS

CENTERLINE

SIDELINE

	۲	IC #5	٢	1IC #1	M	IC #4	NI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ANG	C/D
event no	ALT.	P-ALT.	ALT,	P-ALT.	ALT.	P-ALT.	CPA	ANG	гра	AN G	<u>5-1</u>	1-4	5-4	angle
B7	486.8	484.1	484.1	491.5	481.9	478.5	690.2	44.5	690.5	44.5	.9	-1.4	2	1
88	524.5	523.4	531	530	536.2	535.1	723.9	47.2	723.3	47.2	.8	.6	.7	.6
89	505.9	504.5	506.1	509.1	506.2	504.5	705.8	45.8	705.8	45.8	.5	4	0	0
B10	504.1	501.8	513.9	513.8	521.7	519.3	711.4	46.2	710.5	46.3	1.4	.6	1	.9
average	505.3	503.5	508.8	511.1	511.5	509.4	707.8	45.9	707.5	46				
STD. DEV	15.4	16.1	19.5	15.8	23.2	24.1	14	1.1	13.6	1.1				

and a set of the set of

HELICOPTER: BOEING-VERTOL CH-47D

Nie C.

TEST DATE: 7-12-83

A DECK

والموالية والموالية

OPERATION: 500 FT.FLYOVER/TARGET IAS=135 KTS

			CEM	ITERLINE				SI	DELINE					
	I	MIC #5	۲	IIC #1	N	IC #4	MI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ANG	ANG	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ang	5-1	1-4	5-4	ANGLE
C11	518.3	518.9	509.9	513	503.3	503.7	708.6	46	709.4	46	6	-1	8	7
C12	606.9	633.992	534.3	511.4	476.5	507.5	726.3	47.4	733.2	47.1	-13.9	4	-7.2	-6.6
C13	485.4	484.1	483.7	487.6	482.3	480.6	690	44.5	690.1	44.5	.4	7	1	1
C14	511.2	513.4	510.7	506	510.3	513	709.1	46.1	709.2	46.1	8	.8	0	0
average	530.4	537.6	509.7	504.5	493.1	501.2	708.5	46	710.5	45.9				
STD. DEV	52.9	66.1	20.7	11.7	16.2	14.3	14.8	1.2	17.6	1.1				

TABLE F.4

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 500 FT.FLYOVER/TARGET IAS=120 KTS

			CÐ	TERLINE				SI	DELINE					
	٢	1IC #5	۲	4IC #1	۲	IIC #4	NI	C #2	MI	C #3				REC.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ANG	ANG	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ANG	5-1	1-4	5-4	ANGLE
D15	476.7	479.6	476.4	469.9	476.2	479.9	684.9	44.1	684.9	44.1	-1	1.2	ប	0
D16	496	494.8	498.6	500	500.6	499.2	700.5	45,4	700.2	45.4	.6	0	.3	.2
D17	487.7	480.6	497.6	508.3	505.5	497	699.7	45.3	698.8	45.4	3.2	-1.2	1	.9
D18	487.1	489	490	484.1	492. 3	494.8	694.4	44.9	694.1	44.9	5	1.2	.3	.3
D19	487.8	489	473.7	478.5	462.4	463.3	683	43.9	684.2	43.8	-1.1	-1.7	-1.4	-1.2
average	487.1	486.6	487.2	488.2	487.4	486.8	692.5	44.7	692.5	44.7				
STD. DEV	6.9	6.4	11.7	15."	17.9	15.2	8.2	.7	7.6	.7				

TABLE F.5

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

Ě

OPERATION: 500 FT.FLYOVER/TARGET IAS=105 KTS

			CB	TERLINE				S11	DELINE					
	۲	IIC #5	۲	1IC #1	М	IC #4	MI	C #2	MI	C #3				REG.
	EST.		EST.		ECT		EST.	ELEV	EST.	ELEV	ANG	ANG	ANG	C+9
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ang	5-1	1-4	5-4	ANGLE
E20	414.2	417.1	418.4	409.5	421.7	425.6	645.8	40.4	645.5	40.4	8	1.9	.5	.4
E21	517.9	518.5	507.3	511.4	498.8	499.2	706.7	45.9	707.6	45.8	7	-1.3	-1	~,¢
E22	519.8	521.8	526.4	518.5	531.6	534.3	720.5	46.9	719.9	47	3	1.8	.7	.0
E23	525.6	523.8	524.4	529.2	523.4	521	719.1	46 8	719.2	46.8	6	9	1	Û
E24	535.7	.531.7	545.2	549.1	552.8	548.2	734.4	47.9	733.5	48	2	0	1	.9
E25	545.2	NA	522.2	525.9	503.8	507.5	717.4	46.7	716.2	NA	NA	-2	Ne	-2
average	509.7	502.6	507.3	507.3	505.3	506	707.3	45.8	707	45.6				
STD. DEV	47.9	48	45.2	49.6	45.4	43.2	31.4	2.7	31.3	3				

TABLE F.6

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: 1000 FT.FLYOVER/TARGET IAS=135 KTS

000	 7415
- EEND	 INF

SIDELINE

	M	IC #5	۲	IIC #1	M	IC #4	MI	C #2	M	C #3				REG.
	FST		EST.		EST.		£51.	ELEV	ESI.	ELEV	ANG	ANG	ANG	C∕D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ANG	5-1	1-4	5-4	ANGLE
F26	932.8	931.4	939.9	938.5	947	NA	1060.9	62.4	1061.5	NA	.8	NA	NA	.8
F2/	909.5	910.9	902.8	904.2	896.1	NA	1028.2	61.4	1027.6	NA	7	NA	NA	7
F28	957.3	960.3	942.6	945.6	927.9	NA	1063.3	62.4	1062.1	NA	-1.6	NA	NA	-1.6
F29	944.2	945.6	937.1	938.5	930	NA	1058.4	62.3	1057.8	NA	7	NA	NA	7
average	936	937.1	930.6	931.7	925.3	ERROR	1052.7	62.1	1052.3	ERROR				
STD. DEV	20.3	21.1	18.7	18.6	21.2	0	16.5	.5	16.5	ERROR				

TABLE F 💭

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

and the second second

J

F

Construction of the second

OPERATION: ICAO TAKEOFF/TARGET IAS=85 KTS

			CEN	ITERLINE				SI	DELINE					
	۲	IC #5	۲	4IC #1	۲	IIC #4	MI	C #2	, 1	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ang	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
640	282.1	257.3	387.1	387.7	470.8	444	626	38.2	617.8	38.8	14.8	6.5	10.7	9.7
641	25 ⁰	241.4	368.3	347.5	456.3	440.1	614.6	26.8	606.2	37.4	12.2	10.7	11.4	10.2
642	21	194.4	305.6	293.5	381	363.9	579.2	31.8	572.9	32.4	11.4	8.1	9.8	8.8
643	251.8	233.5	371	349.5	466.1	448	616.2	37	607.2	37.7	13.3	11.3	12.3	11.1
644	156.6	142.9	253.7	233.5	331.1	317.9	553.6	27.3	548	27.9	10.4	9.7	10.1	9
G45	100.4	.71.1	267.7	250.9	334.9	323	560.1	28.6	555	29.1	9.2	8.3	8.8	7.8
average	223.8	26.8	325.6	310.4	406.7	389.5	591.6	33.3	584.5	33.9				
STD. DEV	48.3	44.7	57.6	61	65.8	61.9	31.3	4.7	29.8	4.7				

TABLE F.8

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7 .2-83

OPERATION: 10^9 APPROACH/TARGET IAS=85 KTS

CENTERLINE

SIDELINE

	N	IC #5	N	IC #1	N	IC #4	11 IN	C #2	NI	C #3				REG.
	EST.		F°.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ANG	C/D
event no	ALT.	p-alt .	0 6 v	F-AI".	ALT.	P-ALT.	CPA	ang	CPA	ang	5-1	1-4	5-4	ANGLE
H30	248.9	335.9	430.2	416.5	495.1	482.2	653.6	41.2	646.8	41.6	9.3	7.6	8.5	7.6
H31	372.7	358.9	445.5	438.2	503.6	489.3	663.7	42.2	657.5	42.5	9.2	5.9	7.5	6.8
H3z	352.9	341.6	422.5	411.4	478	466.6	548.5	40.7	642.7	41	8.1	6.4	7.2	6.5
H33	358.7	343.6	439.8	430.7	502.6	486.9	65°,2	41.7	652.5	42.1	10	6.5	8.3	7.4
H34	316.3	305.4	409.1	384.7	483	473.2	639.8	39.7	632.3	40.2	9.2	10.2	9.7	8.6
H35	360.2	349.5	439.1	421.7	501.9	491.7	659.4	41.7	652.7	42.1	8.3	8.1	8.2	7.3
	351.ó	339.2	430.9	417.2	194	481.7	654	41.2	647.4	41.6				
STD. DEV	19.1	18.3	13.3	18.6	11	9.9	8.7	.9	9	.9				

TABLE F.9

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: MILITARY APPROACH/TARGET 1AS=70 KTS

			CÐ	ITERLINE				S 1	DELINE					
	۲	IC #5	ł	4IC #1	۲	IIC #4	MI	C #2	M	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ANG	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ang	5-1	1-4	5-4	ANGLE
136	373.3	357.8	461.9	450	532.6	516.9	674.9	43.2	667.1	43.6	10.6	7.7	9.2	8.2
137	365	349.5	453.9	442	524.8	509	669.4	42.7	661.7	43.1	10.6	7.8	9.2	8.3
138	374.9	357.8	465.2	456	537.2	519.5	677.1	43.4	669.2	43.8	11.3	7.4	9.3	8.4
139	379.3	365.4	453.9	444	513.4	499	669.4	42.7	663	43	9.3	6.1	7.7	6.9
average	373.1	357.6	458.7	448.5	527	511.1	672.7	43	60.3	43.4				
"TD. DEV	6	6.5	5.7	6	10 4	9.2	3.9	.4	J.5	.4				

TABLE F.10

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

والمنافعة والمنافعة

OPERATION: TAKEOFF/TARGET IAS=85 KTS

CENTERLINE

SIDELINE

	MIC #5		NIC #1		MIC #4		MIC #2		NIC #3					REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	AN6	ANG	âng	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ang	5-1	1-4	3-4	angle
J47	F74.2	671	737.9	711.4	788 7	787.4	886.9	56.3	880.1	56.5	4.7	8.8	6.7	5.9
J49	607.4	595.4	671.2	564.5	722 2	709.8	832.2	53 [^]	825.7	54	8	5.3	6.6	5.9
J51	495.7	491.6	623.2	565.1	724 9	725.1	7 94	51.7	781.3	52.1	8.5	18	:3.3	11.8
average	592.4	586	677.5	647	745.3	740.8	837.7	53.9	829	54.2				
STD. DEV	90.2	90.1	57.6	74.7	37.7	41.1	46.7	2.3	49.5	2.2				

TABLE F.11

apartan arm c

HELLCOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: APPROACH/TARGET IAS=100 KTS

- we without

			63	ITERLINE										
	1	HIC #5 MIC #1		NIC #4		NIC #2		MIC #3					REG.	
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ANG	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ang	5-1	1-4	5-4	ANGLE
K46	414.3	406.2	454.3	451.3	486.1	477.7	669.6	42.7	666.2	42.9	5.2	3.1	4.2	3.7
K48	420.9	415.6	467	454.6	503.7	499	678.3	43.5	674.3	43.7	4.5	5.2	4.8	4.3
K50	415.9	410	462.5	451.3	499.6	494.1	675.2	43.2	671.2	43.4	4.8	5	4.9	4.3
К52	408.9	403.1	443.2	438.3	470.4	464.5	662.2	42	659.2	42.2	4.1	3	3.6	3.2
AVERAGE	415	408.7	456.7	448.9	490	483.8	671.3	42.9	667.7	43.1				
STD. DEV	4.9	5.4	10.5	7.2	15	15.8	7.1	.7	6.6	.7				

TABLE F.12

HELICOPTER: BOEING-VERTOL CH-47D

TEST DATE: 7-12-83

OPERATION: MILITARY TAKEOFF/TARGET IAS=70 KTS

			CÐ	ITERLINE				SI						
	ł	4JC #5	t	NC #1	NIC 14		MIC #2		NIC #3					REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ANG	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
L53	264.6	254.637	345	325.1	409.2	400	600.9	35	595.1	35.5	8.2	8.7	8.4	7.5
L54	286.3	276.273	359.6	343.6	418.1	408.5	609.4	36.2	603.9	36.6	7.8	7.5	7.7	6.8
L55	278.7	NA	338.3	328.6	385.8	376.1	597.1	34.5	599.6	NA	NA	5.5	NA	5.5
AVERAGE	276.5	265.5	347.6	332.4	404.3	394.9	602.5	35.2	599.5	36.1				
STD. DEV	11	15.3	18.9	9.8	16.7	16.8	6.3	.9	4.4	.8				

- ----

APPENDIX G

NWS Upper Air Meteorological Data

This appendix presents a summary of meteorological data gleaned from National Weather Service radiosonde (rawinsonde) weather balloon ascensions conducted at Sterling, VA. The data collection is further described in Section 5.4. Tables are identified by launch date and launch time. Within each table the following data are provided:

Time	expressed first in Eastern Standard, then in Eastern Daylight Time							
Surface Height	height of launch point with respect to sea level							
Height	height above ground level, expressed in feet							
Pressure	expressed in millibars							
Temperature	expressed in degrees centigrade							
Relative Humidity	expressed as a percent							
Wind Direction	the direction from which the wind is blowing (in degrees)							
Wind Speed	expressed in knots							
TABLE G.1

1

E.

DATE: 7 / 12 / 83

ı

ł

TIME: 500 EST FLIGHI # 1 6:00 EDT

SURFACE HEIGHT= 279 FT MSL -999= MISSING NATA

ULND SPEED	KTS	0	666-	-999	666-	8	0	10	¢	10	11	10	11	10	\$	8	٩	6	٥	6	0	Ø	٩	D	10	10	11	11	11		11	p
) (INIM	DIRECTION	0	- 999	-999	666	316	289	290	304	310	310	316	ONM	323	325	316	321	322	02e	321	328	334	333	334	332	3.31	332	333	337	335	334	334
REL.ATIVE	HUNIDITY	66	99	66	100	88	76	68	61	54	47	43	39	36	32	29	28	29	29	29	30	30	UE	31	15	31	C M	33	34	34	32	36
TEMPERATURE	DEG C	12.8	15.5	16.8	16.7	18.9	20.8	21.4	21.8	22.2	22.6	22.7	22.9	23.0	23.1	23.3	23.1	22.9	22.7	22.5	22.3	22.0	21.8	21.6	21.4	21.2	20.9	20.7	20.4	20.2	19.9	19.7
PRESSURE	AB	1008.0	1004.4	1000.8	997.2	993.7	990.2	986.7	983.3	979.8	976.4	973.0	969.6	966.2	962.9	959.5	956.2	952.8	949.5	946.2	942.9	939.6	936.3	9.32.9	929.6	926.4	923.2	920.0	916.8	913.6	910.4	907.2
HEIGHT	FET	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE G.2			MISSING DATA	RELATIVE WIND WIND SPEED	0 0 66	666- 666- 86	66 666 - 666	B7 && 7	74 294 18	62 290 27	49 296 21	42 302 17	37 305 15	32 307 13	29 312 13	27 318 13	26 318 11	25 323 11	24 325 12	24 322 11	23 323 9	23 317 8	22 328 10	23 327 11	24 322 9	25 322 9	27 322 11	28 328 10	29 328 9	30 329 9	31 331 10	32 326 13	33 334 13	
	3	HT * 2 7:00 EDT	T MSL -999=	TEMPERATURE F	13.8	14.7	17.0	19.5	20.5	21.4	22.2	22.9	23.5	24.0	24.3	24.3	24.2	23.9	23.7	23.4	23.2	22.9	22.7	22.4	22.2	22.0	21.8	21.5	21.3	21.1	20.9	20.6	20.4	
	/ 12 / 8	EST FLIG	GHT= 279 F	PRESSURE	1008.2	1004.6	1000.9	997.5	0.466	990.5	0.789	983.6	980.1	976.7	973.2	969.9	966.5	963.1	959.8	956.4	953.1	949.7	946.4	943.1	939.9	936.6	933.4	930.1	926.9	923.6	920.3	917.1	913.8	
1 1 1 1	DATE: 7	TIME: 600	SURFACE HEI	HEIGHT	0	100	200	300	400	200	600	200	800	906	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	

		WIND SPEED DN KTS	0	666-	-999	U U	6	11	12			12	11	6	8	7	~	7	~	2	7	6	\$	6	¢	8	ο CC	6	10	
	TA	WIND	C	666	666-	302	306	302	007 007	202	305	308	310	307	311	311	308	309	311	315	316	323	326	330	330	330	338	337	329	1000
IO EDT	= MISSING DA	RELATIVE HUMIDITY	89	82	74	67	60	57	201		49	47	4 10	44	44	41	40	39	38	39	40	41	4 1	M4	44	15	46	46	47	40
HT # 3 8:0	T MSL999:	TEMPERATURE DEG C	18.9	18.2	19.8	21.1	21.5	22.1	22.6	23.3	23.3	23.3	23.3	23.2	23.1	23.0	22.9	22.8	22.7	22.5	N N	22.1	21.9	21.6	21.4	21.2	21.0	20.8	20.6	20.4
EST FLIG		PRESSURE MB	1008.4	1004.8	1001.3	997.7	994.3	770.8	2./24 0./280	980.4	977.0	973.6	970.2	966.9	963.5	960.2	956.8	953.5	950.2	946.9	943.6	940.3	937.0	9.33.8	930.5	927.2	923.9	920.6	917.4	714.1
TIME: 700	SURFACE HE	HEIGHT Feet	0	100	200	300			2002	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100		2300	2400	2500	2600	2700	

¢

TABLE G.3

E: BOU					
ACE HEI	EST FLIC	3HT + 4 9:00	EDT		
-	GHT= 279 F	566- TSH 1.	MISSING DAT	đ	
	PRESSURE MB	TEMPERATURE DEG C	RELATIVE HUMIDITY	WIND Directi	WIND SPEED ON KTS
0	1008.5	22.2	71	290	4
00	1005.0	22.3	67	666-	666-
00	1001.5	22.4	64	666-	-999
00	998.0	22.2	64	666-	666-
00	644.5	22.1	64	349	L
00	991.1	22.2	59	279	С
00	987.6	22.4	54	290	1
00	984.1	23.1	49	298	13
00	680.7	23.4	46	299	14
00	977.2	23.6	44	301	15
00	973.8	23.7	543	306	
00	970.4	23.9	A	61E	12
00	967.1	24.0	41	315	6
00	963.7	24.1	40	316	~
00	940.4	24.2	39	310	¢¢.
00	957.1	23.9	40	310	0
00	953.8	23.7	07	213	•
00	950.5	23.5	41	315	80
00	947.2	23.2	42	320	2
00	943.9	23.0	A 3	318	~
00	940.6	22.8	43	327	0
00	537.3	22.5	44	02E	ũ
00	934.0	22.3	55	328	8
00	936.7	22.1	45	326	6
00	927.4	21.8	46	331	6
00	924.1	21.6	46	022	6
00	920.8	21.4	74	331	6
00	917.6	21.1	47	327	10
00	914.4	20.8		3:50	10
00	911.2	20.5	48	1331	11

E: 855	EST FLIC				
			EDT		
FACE HE	IGHT= 279 F	666- "SW 1.	AN BAISSIM =	C.L	
GHT	PRESSURE	TEMPERATURE	RELATIVE	HIND	WIND SPEED
-	RE	DE.G C	LITTUNH	PIRECIJUN	
0	1008.4	26.1	52	330	\$
100	1004.9	25.5	52	666-	-999
200	1001.5	24.9	51	666-	666-
300	998.0	24.4	51	286	21
400	994.6	24.2	51	290	20
500	991.1	23.9	51	311	4
600	987.7	23.6	50	301	ω
700	984.2	23.4	50	291	œ
800	980.8	23.1	20	299	8
900	977.3	22.8	50	308	~
000	973.9	23.0	40	302	12
100	970.5	23.2	45	309	11
200	967.1	23.3	5	319	10
300	763.8	23•3	14	314	1 1
4 00	940.4	23.2	•	302	10
500	957.1	23.1	39	312	10
600	953.7	23.0	38	313	œ
700	950.4	23.0	37	318	2
800	947.0	22.9	36	335	¢
900	2.549	22.7	35	319	ý
000	940.4	22.5	36	327	\$
100	937.2	22.2	37	330	U
200	933.9	22.0	37	329	ŝ
300	930.7	21.8	38	334	ស
004	927.4	21.5	39	344	ŝ
500	924.1	21.3	40	338	
600	920.9	21.0	40	343	Ø
700	917.6	20.8	41	352	æ
800	914.4	20.6	20	350	~
900	911.1	20.3	42	356	~

THE: 10	001 EST	FLIGHT # 6	11:01 EDT		
JRFACE F	4EIGHT= 279	FT MSL -999	- MISSING DA	TA	
THOIS	PRESSURE	TEMPERATURE	RELATIVE	<u>ant</u>	WIN) SPEED
EET	HB	DEG C	HUMIDITY	DIRECT	IDN KTS
0	1008.2	28.2	48	290	2
100	1004.7	27.5	49	666-	606-
200	1001.3	26.8	51	666-	-999
300	997.B	26.4	51	666-	666-
400	994.4	26.0	52		
500	991.0	25.6	52	289	4
600	987.6	25+2	53	300	~
200	984.2	24.9	52	326	¢
800	980.8	21.7	52	325	9
900	977.4	24.6	51	322	4
1000	974.0	24.4	50	335	4
1100	970.6	24.2	49	122	4
1200	967.2	24.1	07	308	S
1300	963.9	23.9	47	298	4
1400	960.5	23.7	46	278	2
1500	957.1	23.5	45	302	0
1600	953.8	23.3	45	316	.
1700	950.5	23.1	46	301	4
1800	947.2	22.9	46	302	m
1900	943.9	22.6	46	308	20
2000	940.6	22.4	46	327	2
2100	937.3	22.2	47	331	M .
2200	934.0	21.9	47	331	
2300	930.8	21.7	47	340	4
2400	927.5	21.5	48	M	4
2500	924.2	21.3	48	11	4
2600	920.9	21.1	48	223	4
2700	917.7	21.0	4 ¢	351	4
2800	911.5	20.9	40	3.58	- •
2900	911.3	20.9	44	332	Ś

HE: 1103 EST FLIGHT 2.001 mm BRAGE HEIGHT 2.77 FT -999= MISSING DAIA BRAGE HEIGHT 2.77 FT HML -999= MISSING DAIA BRAGE HERAL HML FT MAL -999= MISSING DAIA BRAGE HERAL HM DELEG HUMIDITY MINU SFED BRAGE HERAL HU A -999 -999 -999 100 10064:1 289:1 43 -999 -999 -999 200 991:1 286:0 47 289 99 -999 200 991:1 266:0 47 286 99 -999 200 991:1 266:0 47 286 99 -999 200 991:1 266:0 47 286 99 -999 200 991:1 286:0 49 272 89 99 20	TE: 7	/ 12 /	83			
R-AGE HEIGHT 279 <fi< th=""> HSL -999= HISTING DIAT LEHT PRESSURE FEHPERATURE RELATIVE WIND WIND WIND EFT HB LUGG C HUMJDITY DIRECTION MIND See 100 1008.1 29.4 43 300 -999 -999 200 1001.2 28.0 44 -999 -999 -999 200 990.9 27.1 45 275 99 -999 200 990.4 26.1 47 295 99 -999 200 990.4 26.1 47 295 99 -999 200 990.4 26.1 47 275 98 99 -999 200 991.8 26.1 48 271 98 271 97 200 994.4 26.1 27.3 300 57 300 57 200 97 27.3</fi<>	HE: 1103	EST	FLIGHT + 7	12:03 EDT		
IBHT PRESSURE BIT IEAF RELATIVE BIT MIND	RFACE HEI	GHT= 279	FT MSL -999	7= MISSING DA	ITA	
ET HB ILEG C HUMIDITY DIRECTION N13 100 10081.1 29.4 43 -999 -999 -999 200 10011.2 28.5 44 -999 -999 -999 200 972.48 27.1 45 -999 -999 -999 300 979.4 27.1 45 275 48 -999 -999 500 999.5 26.3 47 276 8 -999 -999 500 999.5 26.3 47 276 8 -999 -999 600 991.5 26.3 47 273 8 -999 -999 700 990.8 25.5 48 277 8 8 -999 1100 97.1 25.5 48 290 59 306 5 1100 97.1 25.1 51 306 5 5 5 11000 97.1	IGHT	PRESSURE	LEMPERATURE	RELATIVE	QNIM	MINI) SPEED
1001008.1 29.4 4.3 -999 -999 200 10004.7 28.7 4.4 -999 -999 200 997.8 27.5 4.4 -999 -999 500 990.4 26.13 4.5 2.649 9.999 500 990.4 26.13 4.7 27.6 9.99 500 990.4 26.13 4.7 27.6 9.99 500 990.4 26.13 4.7 27.6 9.99 500 990.4 25.13 4.9 27.7 9.9 500 970.4 255.0 4.9 200.3 5.7 900 970.4 255.0 4.9 200.3 5.7 900 970.4 255.0 4.9 300.6 5.7 1100 970.4 255.0 4.9 300.7 5.7 1100 970.4 27.4 51 300.7 5.7 11200 954.1 23.4 50 290.3 5.7 11200 950.4 27.4 55 35.7 5.7 11200 950.4 27.4 55 35.7 7.7 11200 950.4 27.4 53.7 37.3 5.7 11200 950.4 27.4 57.3 35.7 7.7 11200 950.4 27.4 57.3 35.9 7.7 11200 97.4 27.4 57.3 35.9 7.7 11200 97.4 27.4 57	EET	MB	DEG C	HUMIDITY	DIRECTI	ON KTS
1001000100028.743-999-99920001001.228.044-999-999400994.427.1452.69-999400994.52.6.3472769600984.12.6.3472.759700984.12.6.3472.769700984.12.6.3472.759700970.82.6.3472.769700970.42.6.3472.769700970.82.5.3493005700970.82.5.34930351100970.42.5.3503035960951.42.5.35030351100964.12.5.3513.671100964.12.4.3513.671100964.12.3.4513.671100964.12.3.4513.671100964.12.3.4513.671100964.12.3.4513.671100964.12.3.4513.671100964.12.3.4513.671100964.12.3.451513.6110097.42.3.4515155110097.42.1.45156110097.42.1.4 </td <td>c</td> <td>1008.1</td> <td>29.4</td> <td>43</td> <td>300</td> <td>\$</td>	c	1008.1	29.4	43	300	\$
200 1001.2 78.0 14 -999 -999 -999 300 997.8 27.5 4.6 27.7 9.9 -999 500 997.8 26.7 4.5 27.7 9.9 500 997.8 26.3 4.7 278.3 9.9 500 997.8 25.7 4.8 277.9 9.9 900.9 987.1 25.7 4.8 277.9 9.9 900.9 977.4 25.7 4.8 277.9 8.8 900.9 977.4 25.5 4.9 300.6 5.7 900.9 977.4 25.5 4.9 300.6 5.7 11000 977.4 25.6 370 303 5.7 900.9 957.4 $23.4.6$ 50 370.6 5.7 11000 957.4 $23.4.6$ 50 370.6 5.7 11000 957.4 $23.4.6$ 50 370.6 5.7 11000 957.4 $23.4.6$ 57 356 7.7 12000 957.4 $23.2.6$ 57 356 7.7 12000 977.4 $22.2.7$ 55 351 7.7 12000 977.4 $22.2.7$ 55 351 7.7 2200 977.4 $22.2.7$ 55 351 7.7 2200 977.4 $22.2.7$ 55 351 7.7 2200 977.4 $22.2.7$ 55 370.6 7.7 2200 97	100	1004.7	28.7	54	666-	-999
30 971.8 27.5 44 -999 -990 -9	200	1001.2	28.0	14	666	666-
400 994.4 27.1 45 26.9 98 500 997.5 26.7 45 277 9 700 994.1 26.7 45 277 9 700 994.1 25.5 48 277 9 900 974.1 25.5 48 277 9 900 974.1 25.5 48 277 9 900 974.1 25.5 48 277 9 900 974.1 25.5 48 277 9 1100 970.8 25.3 49 305 57 30 11200 967.4 24.3 51 30 5 5 11200 967.4 23.4 53 30 5 5 11200 967.4 23.4 53 30 5 5 11200 97.4 23.4 53 30 5 5 1200 96	OOE	997.8	27.5	4	-999	-999
500 990.9 26.7 46 272 9 7600 981.15 25.6.3 47 238 9 7600 981.15 25.6.3 47 238 9 700 987.1 25.6.3 47 238 9 900 977.4 25.5 48 271 8 1000 977.4 25.5 49 306 57 8 1100 970.4 25.5 30 39 30 57 8 1100 97.4 25.5 30 30 57 30 57 57 36 57 57 57 57 57 55 57 55 57 55 55 57 55 55 57 55	400	994.4	27.1	45	269	Ø
600 987.5 26.3 47 283 99 700 987.5 26.0 47 275 88 275 88 900 979.4 255.5 48 277 88 277 88 900 979.4 255.5 48 277 88 277 88 900 970.4 255.5 48 277 88 277 88 1100 970.4 255.5 48 500 303 57 57 1100 967.4 24.6 50 303 303 57 57 1100 967.4 24.6 50 303 303 57 1100 957.4 24.6 50 303 303 57 1100 957.4 231.9 51 325 303 57 1100 970.8 233.6 53 353 57 353 1100 970.4 233.2 533.6 533.6 353 56 2100 970.4 233.2 553 356 356 376 2200 970.4 22.1 556 370 7 2200 970.4 22.1 556 371 7 2200 970.4 22.1 556 370 7 2200 970.4 22.1 556 371 7 2200 970.4 21.1 57 341 55 2200 970.4 21.1 57 341	200	990.9	26.7	46	272	6
700 984.1 26.0 47 276 8 800 970.8 255.7 48 297 6 77 1000 970.1 255.3 48 297 6 8 77 1000 970.1 255.3 48 297 6 77 6 8 7 7 1100 970.1 255.3 48 297 6 7	600	987.5	26.3	25	283	٩
800 980.8 25.7 48 277 8 1000 977.4 25.5 49 301 5 1100 977.4 25.5 49 306 5 1100 967.4 25.5 49 306 5 1100 967.4 25.6 49 306 5 11200 967.4 24.6 50 393 5 11300 967.4 24.6 50 393 5 11400 966 51 321 39 5 11500 97.4 23.6 53 359 6 7 11600 97.4 23.6 53 359 7 7 11600 947.1 23.2 53 359 7 7 11600 947.1 23.2 53 359 7 7 11600 947.1 23.2 53 359 6 7 11600 947.1<	200	984.1	26.0	47	276	œ
900 977.4 25.5 48 291 6 1200 964.1 25.3 49 303 5 1200 964.1 25.3 49 303 5 1200 964.1 24.6 50 299 50 599 5 1200 964.1 24.6 50 299 303 5 5 1200 957.4 24.6 50 299 5 303 5 1500 957.1 23.4 51 314 6 7 1500 950.8 23.6 53 353 5 7 7 1900 947.1 23.2 53 353 7 7 7 21900 947.1 23.2 53 353 7 7 7 2200 93.1 23.1 53 353 7 7 7 2200 94.1 23.2 353 54 7	800	980.8	25.7	48	277	Ø
1000 974.1 25.3 19 300 5 1100 970.8 25.0 49 306 5 1200 9647.4 25.0 49 306 5 1200 9647.4 24.6 50 393 5 305 5 1200 9647.4 24.1 51 306 5 303 5 1400 957.4 24.1 51 321 5 323 5 <t< td=""><td>006</td><td>977.4</td><td>25.5</td><td>48</td><td>291</td><td>¢</td></t<>	006	977.4	25.5	48	291	¢
1100 970.8 25.0 49 306 5 1200 967.4 24.8 50 393 5 1300 967.4 24.8 50 393 5 1400 960.8 24.1 50 393 5 1500 957.4 24.1 51 300 8 1500 957.4 24.1 51 301 8 1500 957.4 23.5 51 321 7 1600 947.1 23.2 52 351 7 1900 940.7 22.7 53 351 7 2000 940.7 22.7 53 351 7 2100 937.4 22.7 53 351 7 2200 93.0 22.1 53 351 7 2200 93.0 22.1 53 350 6 2200 93.0 21.1 53 350 6 2200 92.1.1 22.1 55 343 5 2200 92.1 57 343 5 5 2200 91.4 20.1 56 7 2200 9 57 <t< td=""><td>1000</td><td>974.1</td><td>25.3</td><td>45</td><td>300</td><td>IJ</td></t<>	1000	974.1	25.3	45	300	IJ
1200 967.4 24.8 50 303 33 1300 964.1 24.8 50 299 6 1400 953.1 24.3 51 50 299 6 1500 953.1 23.1 51 353 7 1500 950.8 23.6 52 353 7 1700 950.8 23.6 52 353 7 1700 947.4 23.6 52 353 7 1900 947.4 23.2 53 359 7 2100 947.4 23.2 53 359 7 2100 947.4 22.7 53 350 7 2100 947.4 22.7 53 350 7 2200 930.9 22.1 55 341 7 2200 930.9 22.1 56 341 7 2100 971.6 21.4 57 343 5 2500 971.1 21.1 57 341 5 2600 971.4 20.1 56 341 5 2700 911.4 20.1 57 343 5 2700 911.4 20.1 55 351 4 2700 911.4 20.1 55 351 4	1100	970.8	25.0	49	306	Ω.
1300 964.1 24.6 50 299 6 1400 960.8 24.1 51 300 8 1500 957.4 24.1 51 300 8 1500 957.4 24.1 51 300 8 1500 957.4 24.1 51 321 7 1500 947.4 23.6 52 351 7 1800 947.4 23.6 52 351 7 2100 947.4 23.2 53 350 6 2100 947.4 23.2 53 350 7 2100 937.4 23.2 53 350 6 2200 930.9 22.1 55 341 5 5 2300 930.9 55 343 5 7 7 2200 930.9 55 343 5 7 7 2300 9 55 343	1200	967.4	24.8	50	303	n
1400 960.8 24.3 51 300 8 1500 957.4 24.1 51 321 7 1500 957.4 23.5 51 321 7 1600 956.1 23.5 51 353 6 1700 947.4 23.5 52 351 7 1800 940.1 23.5 52 351 7 2000 940.1 23.2 53 350 6 2100 937.4 22.7 53 350 7 2200 937.4 22.1 55 341 7 2200 937.4 22.1 56 341 5 2200 930.9 22.1 56 341 5 2300 924.3 21.1 56 343 5 2500 924.3 21.1 56 343 5 2500 924.3 21.1 56 343 5 2600 924.3 21.1 56 343 5 2600 924.3 21.1 56 343 5 2600 914.6 57 54 5 2700 914.3 20.1<	1300	964.1	24.6	50	299	9
1500 957.4 24.1 51 321 7 1600 956.1 23.6 52 358 6 1700 947.4 23.6 52 358 6 1700 947.4 23.6 52 358 6 1900 947.4 23.2 53 351 7 2100 947.4 23.2 53 351 7 2200 947.1 23.2 53 351 7 2200 937.4 22.7 53 350 7 2200 936.1 22.1 56 340 7 2200 920.5 54 55 343 5 2300 921.1 21.4 55 343 5 5 2500 914.6 57 343 5 5 5 5 2700 917.8 21.4 57 343 5 5 5 5 5 5 <	1400	960.8	24.3	51	300	œ
1600 954.1 23.9 51 354 6 1700 947.4 23.6 52 358 6 1800 947.1 23.4 52 351 7 1900 947.1 23.2 53 351 7 2100 947.1 23.2 53 359 6 2200 947.1 23.2 53 359 7 2200 947.1 23.2 53 359 7 2200 934.1 222.7 54 360 7 2200 934.1 222.1 55 341 5 2200 924.1 221.4 55 341 5 2300 924.3 21.1 57 343 5 2500 924.1 21.1 58 21 5 2500 914.6 20.6 58 6 5 2700 914.6 20.1 55 353 5 2900 914.6 20.1 55 353 5 2900 914.6 20.1 55 353 5	1500	957.4	24.1	51	321	7
1700 950.8 23.6 52 358 6 1800 947.4 23.2 53 351 7 1900 947.1 23.2 53 351 7 2000 947.1 23.2 53 351 7 2000 947.1 23.2 53 351 7 2000 937.4 23.2 53 351 7 2100 937.4 22.7 54 360 7 2200 930.9 22.1 55 341 5 2300 927.6 21.4 55 343 5 2400 924.3 21.4 57 343 5 2500 921.1 21.4 57 343 5 2600 921.1 21.1 58 313 5 2700 921.1 21.1 58 313 5 2700 917.8 20.1 56 313 5 2700 917.8 20.1 57 343 5 2700<	1600	954.1	23.9	51	中心で	ዮ
1800 947.4 23.4 52 351 7 1900 940.7 23.2 53 359 7 22000 937.4 23.2 53 359 7 2200 937.4 22.7 53 350 7 2200 934.1 22.7 54 360 7 2200 934.1 22.1 55 341 5 2200 927.6 21.8 55 341 5 2400 927.6 21.4 55 343 5 2500 921.1 21.4 57 343 5 2600 921.1 21.1 58 21 5 2700 914.6 20.5 58 6 5 2800 911.4 20.1 55 343 5 2900 911.4 20.1 55 343 5	1700	950.8	23.6	52	358	\$
1900 945.1 23.2 53 359 7 2000 937.4 22.7 53 350 7 2100 937.4 22.7 54 360 7 2200 930.9 22.1 55 350 7 2200 930.9 22.1 55 350 7 2200 927.6 22.1 55 341 5 2300 927.6 21.8 57 343 5 2400 921.1 21.1 57 343 5 2500 917.8 21.1 58 21 5 2700 917.8 20.1 58 21 5 2700 911.4 20.1 55 351 5	1800	947.4	23.4	52	351	~
2000 940.7 22.9 53 6 7 2100 937.4 22.7 54 360 7 2200 937.4 22.7 55 350 7 2200 934.1 22.7 55 340 7 2200 934.1 22.1 55 341 5 2300 927.6 21.1 56 343 5 2400 924.3 21.1 57 343 5 2500 921.1 21.1 58 21 5 2600 917.8 20.8 58 21 5 2700 914.6 20.5 58 21 5 2700 914.6 20.5 58 6 5 2700 914.6 20.5 58 6 5 2700 914.6 20.5 58 6 5 2700 914.6 50.5 58 6 5	1900	949.1	23.2	53	326	~
2100 937.4 22.7 54 360 7 2200 934.1 22.4 55 350 6 2300 930.9 22.1 56 341 5 2400 927.6 21.8 57 343 5 2500 924.3 21.4 57 343 5 2500 921.1 21.4 57 343 5 2500 917.8 20.1 58 21 5 2700 914.6 20.5 58 6 5 2900 911.4 20.1 55 353 5	2000	940.7	22.9	M S	¢.	~
2200 934.1 22.4 55 350 6 2300 930.9 22.1 56 341 5 2400 927.6 21.8 57 343 5 2500 924.3 21.4 57 343 5 2500 921.1 21.4 57 343 5 2600 921.1 21.4 57 343 5 2600 921.1 21.4 58 21 5 2700 917.8 20.6 58 18 5 2700 914.6 20.5 58 6 5 2900 911.4 20.1 55 353 5 5	2100	937.4	22.7	5	360	~
2300 930.9 22.1 56 341 5 2400 927.6 21.8 57 343 5 2500 921.1 21.4 57 343 5 2600 921.1 21.1 58 21 2700 917.8 20.1 58 21 2700 914.6 20.5 58 6 2900 911.4 20.1 55 353	2200	934.1	22.4	35	350	\$
2400 927.6 21.8 57 343 5 2500 924.3 21.4 57 55 5 2600 921.1 21.1 58 21 5 2600 921.1 21.1 58 21 5 2700 917.8 20.8 58 21 5 2800 914.6 20.5 58 6 5 2900 911.4 20.1 55 353 4	2300	930.9	22.1	56	341	ณ
2500 924.3 21.4 57 5 5 2600 921.1 21.1 58 21 5 2700 917.8 20.8 59 18 5 2800 914.6 20.5 58 6 5 2900 911.4 20.1 55 353 4	2400	927.6	21.8	57	243	ŝ
2600 921.1 21.1 58 21 5 2700 917.8 20.8 59 18 5 2800 914.6 20.5 58 6 5 2900 911.4 20.1 55 353 4	2500	924.3	21.4	57	מו	o.
2700 917.8 20.8 59 18 5 2800 914.6 20.5 58 6 5 2900 911.4 20.1 55 353 4	2600	921.1	21.1	28	23	17
2800 914.6 20.5 58 6 5 2900 911.4 20.1 55 353 4	2700	917.8	20.8	56	18	5
2900 911.4 20.1 55 353 4	2800	914.6	20.5	58	4	n
	2900	911.4	20.1	53	353	4

APPENDIX H

NWS - IAD Surface Meteorological Data

This appendix presents a summary of meteorological data gleaned from measurements conducted by the National Weather Service Station at Dulles. Readings were noted evey 15 minutes during the test. The data acquisition is described in Section 5.5.

Within each table the following data are provided:

za a da degada ta aniya genterenteka yan kundura kundura. A siya sura da suku na ta aniya da da aniya da gente y

Time(EDT)	time the measurement was taken, expressed in Eastern Daylight Time
Barometric pressure	expressed in inches of mercury
Temperature	expressed in degrees Fahrenheit and centigrade
Humidity	relative, expressed as a percent
Wind Speed	expressed in knots
Wind Direction	direction from which the wind is moving

TABLE H.1

SURFACE METEOROLOGICAL DATA (NWS)

TEST DATE: July 12, 1983

HELICOPTER: Boeing-Vertol CH-47D

LOCATION: DULLES AIRPORT*

	BAROMETRIC				DNIM
TIME (EDT)	PRESSURE (INCHES)	TEMPERATURE °F(°C)	HUMIDITY (%)	SPEED (MPH)	DIRECTION (DEGREES)
05:30	30.07	57(14)	67	0	000
05:44	30.07	55(13)	100	0	000
05:53	30.07	56(13)	26	0	000
06:23	30.07	55(13)	26	0	000
06:37	30.07	56(13)	26	0	000
06:44	30.08	56(13)	93	0	000
06:51	30.08	57(14)	93	0	000
07:13	30.08	60(15)	93	N	160
07:29	30.08	62(17)	60	N	170
07:42	30.08	64(18)	90	N	150
07:51	30.08	65(18)	60	N	300
08:15	30.09	68(20)	87	2	130
08:30	30.09	70(21)	87	2	150
08:44	30.08	71(22)	87	4	280
08:49	30.08	72(22)	84	ſ	280
09:15	30.08	75(24)	76	5	300
09:28	30.08	76(24)	74	5	290
60:44	30.08	78(25)	69	Q	310
67:60	30.08	79(26)	65	7	320
10:15	30.08	80(27)	62	7	310
10:30	30.07	81(27)	59	8	320
10:45	30.07	82(28)	55	9	280

*Sensors located approximately 2 miles east of measurement array

TABLE H.2

And a second second

153 Jack Marshall 1944

and a start of the s A start of the start

SURFACE METEOROLOGICAL DATA (NWS)

July 12, 1983

TEST DATE:

HELICOPTER: Boeing-Vertol CH-47D (CONT) LOCATION: DULLES AIRPORT*

	BAROMETRIC			DNIM	
TIMF (EDT)	PRESSURE (INCHES)	TEMPERATURE °F(°C)	HUMIDITY (%)	SPEED (MPH)	DIRECTION (DEGREES)
11:00	30.07	82(28)	55	7	310
11.16	30.07	83(28)	53	5	330
11:30	30.07	84(29)	50	6	290
11:45	30.07	84(29)	51	5	310
12:00	30.07	85(29)	48	6	330
12:15	30.07	86(30)	45	7	310
12:30	30.07	86(30)	45	7	300
12:45	30.07	86(30)	45	7	310
1:00	30.06	87(30)	43	6	270
2:00	30.06	87 (عب)	43	Ŷ	240
3:00	30.06	88(.	44	6	250
4:00	30.06	90(32,	44	9	230

*Sensors located approximately 2 miles east of measurement array

,

÷

APPENDIX I

On-Site Meteorological Data

This appendix presents a summary of meteorological data collected on-site by TSC personnel using a climatronics model EWS weather system. The anemometer and temperature sensor were located 5 feet above ground level at noise site 4. The data collection is further described in Section 5.5.

Within each table, the following data are provided:

Remarks	observations concerning cloud cover and visibility
Wind Direction	direction from which the wind is blowing
Windspeed	expressed in knots
Humidity	expressed as a percent
Temperature	expressed in degrees Fahrenheit and centigrade
Time(EDT)	expressed in Eastern Daylight Time

TABLE I

SURFACE METEOROLOGICAL DATA

TEST DATE: July 12, 1983

HELICOPTER: Boeing-Vertol CH-47D

LOCATION: DULLES, SITE #4*

			ASUNIM	EED	DNIM	
TIME (EDT)	TEMPERATURE °F(°C)	HUMIDITY (%)	AVG (MPH)	RANGE (MPH)	DIRECTION (DEGREES)	REMARKS
05:18	621	95	C	0-0		Before sunrise
06:02	55	63	0	0-0		Haze, fog, light clouds
08:25	72	66	0	0-0		Grass dry, humid, haze on harizon
08:48	72	54	£	0-3	157.5	
	72	52	£	0-5	157.5	
09:57	80	50	4	3 - 5	157.5	
10:29	78	44	Ś	3-10	157.5	
10:45	80	44	رس	3-5	157.5	Dry, hot and breezy, clear sky
11:00	86	07	ę	0-5	135	with haze on harizon
11:15	86	40	m	0-10	135	
11:30	06	38	e	0-5	06	
11:51	60	38	ß	3-10	06	
12:27	86	36	2	0-3	157.5	Hazy
12:47	05	36	N	0-3	157.5	
1:20	92	34	N	0-3	270	
1:34	84	36	m	0-5	247.5	
1:51	06	34	N	0-3	157.5	
2:13	88	34	£	- 00- 10	270	
2:43	88	32	e	0-5	180	
3:00	92	34	0	0-0		