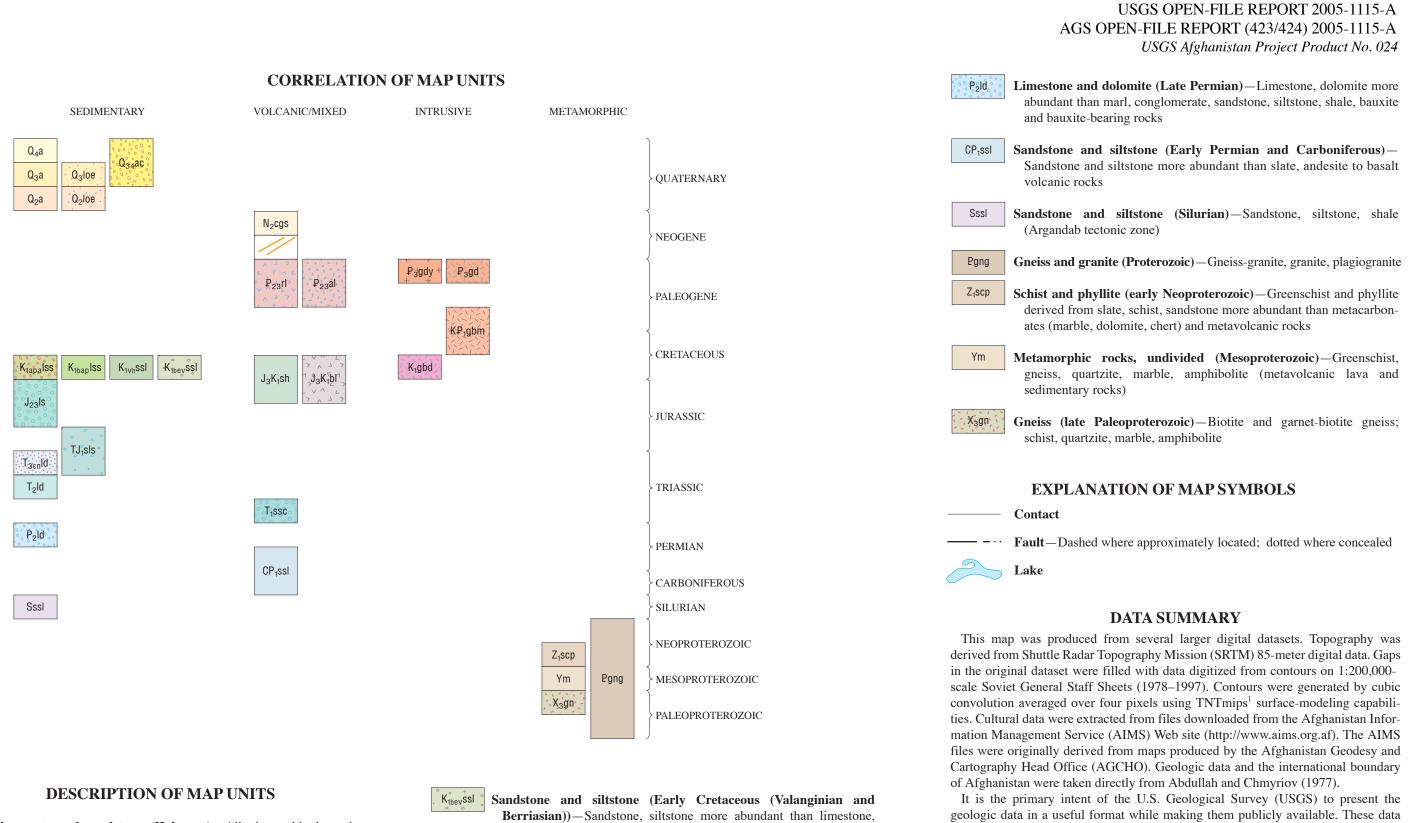


(http://www.aims.org.af) Projection: Universal Transverse Mercator, zone 41, WGS 84 Datum

U.S. DEPARTMENT OF THE INTERIOR


Prepared in cooperation with the U.S. Geological Survey and the Afghanistan Geodesy and Cartography Head Office Under the auspices of the U.S. Agency for International Development and the U.S. Trade and Development Agency

5 0 CONTOUR INTERVAL 250 METERS

GEOLOGIC MAP OF QUADRANGLE 3264, NAWZAD-MUSA-QALA (423) AND DEHRAWAT (424) QUADRANGLES, AFGHANISTAN Compiled by

Robert G. Bohannon and Charles R. Lindsay 2005

AFGHAN GEOLOGICAL SURVEY

J₃K₁sh Shale and siltstone (Early Cretaceous (Hauterivian) and Late Juras-

L^J_K_bL^ Basalt lava (Early Cretaceous (Hauterivian) and Late Jurassic

Tacnid
Limestone and dolomite (Late Triassic (Norian and Carnian))

T₂Id **Limestone and dolomite (Middle Triassic)**—Limestone, dolomite

Sandstone and conglomerate (Early Triassic)—Variegated sandstone, gravelstone, conglomerate, chert, rhyolite and basalt volcanic rocks

Limestone (Late and Middle Jurassic) – Limestone, marl

sic (Tithonian))-Shale more abundant than siltstone, sandstone, conglomerate, chert, limestone, greenstone, acid and mafic volcanic

(Tithonian))-Basalt lava more abundant than shale, siltstone, sandstone, conglomerate, chert, limestone, greenstone, acid volcanic

Siltstone and sandstone (Early Jurassic and Late Triassic (Rhaetian))—Siltstone, sandstone more abundant than shale, marl,

marl

rocks

rocks

limestone

Limestone, dolomite

° TJ₄slŝ

	DESCRIPTION OF MAP UNITS
Q ₄ a	Conglomerate and sandstone (Holocene) —Alluvium: shingly and detrital sediments, gravel, sand more abundant than silt and clay
00000000000000000000000000000000000000	Fan alluvium and colluvium (Holocene and late Pleistocene) —Fan alluvium and colluvium: shingly and detrital sediments, gravel, sand, clay
Q ₃ a	Conglomerate and sandstone (late Pleistocene) —Alluvium: shingly and detrital sediments, gravel, sand more abundant than silt and clay
Q ₃ loe	Loess (late Pleistocene)—Loess more abundant than sand, clay
Q ₂ a	Conglomerate and sandstone (middle Pleistocene) —Alluvium: shingly and detrital sediments, gravel, sand more abundant than silt and clay
Q ₂ loe	Loess (middle Pleistocene) – Loess more abundant than sand, clay
N ₂ cgs	Conglomerate and sandstone (Pliocene) —Gray conglomerate, grit, sandstone more abundant than siltstone, clay, limestone, marl; gypsum, salt; acid to mafic volcanic rocks
//	Andesite and diorite (Miocene)—Andesite, diorite more abundant than diabase porphyry dikes (and veins)
+ + + + + + +	Granodiorite and granosyenite (Oligocene) —Granodiorite, alaskite, granosyenite more abundant than granite (Phase II)
_ ′₽ ₃ gd_ ′ ∖	Granodiorite (Oligocene)—Granodiorite (Phase I)
² ² ² ² ³	Rhyolite lava (Oligocene and Eocene) —Rhyolite lava more abundant than basaltic andesite, basalt, trachyte, dacite, ignimbrite, tuff; conglomerate, sandstone, siltstone, limestone
P ₂₃ al	Andesite lava (Oligocene and Eocene)—Andesite lava more abundant than basaltic andesite, basalt, trachyte, dacite, rhyolite, ignimbrite, tuff; conglomerate, sandstone, siltstone, limestone
KPigbm	Gabbro and monzonite (Paleocene and Late Cretaceous) —Gabbro, monzonite more abundant than diorite, granite, granosyenite, syenite porphyry, syenite
K ₁ gbd	Gabbro and diorite (Early Cretaceous)—Gabbro, diorite more abun- dant than plagiogranite
K tapalss .	Limestone and sandstone (Early Cretaceous (Albian and Aptian))— Limestone, marl, sandstone more abundant than conglomerate
K _{1bap} lss	Limestone and sandstone (Early Cretaceous (Aptian and Barremian))—Limestone, marl, sandstone more abundant than conglomerate
K _{1vh} ssl	Sandstone and siltstone (Early Cretaceous (Hauterivian and Valanginian))—Sandstone, siltstone more abundant than limestone, marl

It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977).

This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat naturalcolor, and Landsat false-color maps, respectively. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

REFERENCE CITED

Abdullah, Sh., and Chmyriov, V.M., eds., 1977, Map of mineral resources of Afghanistan: Kabul, Ministry of Mines and Industries of the Democratic Republic of Afghanistan, Department of Geological and Mineral Survey, V/O "Technoexport" USSR, scale 1:500,000.

¹Geospatial analysis software developed by MicroImages, Inc., Lincoln, NE 68508-2010.

									70 39°N	D°E 7	1°E 72 212	2°E
			64 38°N	t°E 68 117	5°E 60	5°E 6 213	^{7°E} 68 <mark>214</mark>	^{3°E} 215	^{69°E} 216	3870 3217	218	73°E 74°E 75°E 7 313 314 315
	62 37°N	2°E 6	3°E	3764	/``	3766	ا اکرد سر ر	37.68		3770		3772
60°E 61°E		3662	122 	123,' (. 30 64	'124 	219 	220 	221 3668		223 2 3670	224	319
5°N 60°E 61°E	402	403	<u></u>	405	406	501	502	503	504	505 م ال رأ أن م	506	
5°N 3560 (407 /	408	3562 - ⁷ 409	410	3564 411	3 412	-3566 507	508	3568 509		3570 511	512	
4°N 3460 413	414	3462 415	I , I 416	3464 417	4,18	 3466ζ 513	514	3468 575/	516	3470 517		
3360 3360	\	3362	، ~~	3364		3366		3368 ⁷		3370	 	
419,	420	421	422 	423	(<mark>424</mark> (<i> </i> /	5 <u>1</u> 9_'	1 520 1 /	521	522			
2°N 601 (602 /	<u>3262</u> 603	+ <u>6</u> 04	3264 605 /	606	32,66 (701-	+ 7 <mark>702</mark>	3268 , -7 <u>03</u>	1,704			
1°N 3160	608	3162 609	/ / / 610	3164 611	612	3166 / ⁻ 707	·	3168				GCHO 1:250,000-scale quadrangle SGS/AGS 1:250,000-scale quadrangle
0°N 613 √	614	3062 / 615	í 	3064 617	618	30 66	 					
9°N 2960		2962	 	ے۔۔۔۔ 2964		2966	 					

